A version of the commutative alternating direction method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 2, pp. 135-141
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we consider a version of the iterative adaptive commutative alternating direction method. For the optimization of the method we need not require a priori spectrum information. The convergence rate estimate is kept the same as in the case with a priori information.
@article{SJVM_2004_7_2_a4,
author = {O. S. Omelayeva},
title = {A~version of the commutative alternating direction method},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {135--141},
year = {2004},
volume = {7},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a4/}
}
O. S. Omelayeva. A version of the commutative alternating direction method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 2, pp. 135-141. http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a4/
[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR
[2] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR
[3] Konovalov A. N., “K teorii kommutativnogo metoda peremennykh napravlenii”, Dif. uravneniya, 39:7 (2003), 923–932 | MR | Zbl
[4] Konovalov A. N., “K teorii poperemenno-treugolnogo metoda”, Sib. mat. zhurnal, 43:3 (2002), 552–572 | MR | Zbl