Minimal and almost minimal rank~1 lattice rules, exact on trigonometric polynomials in two variables
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 2, pp. 125-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-dimensional rank 1 lattice rules of trigonometric degree $d$ $(d\geq 1)$ are characterized. The number of nodes of these cubature formulas is minimal or differs from minimal by one for even $d$, or by two for odd $d$.
@article{SJVM_2004_7_2_a3,
     author = {M. V. Noskov and N. N. Osipov},
     title = {Minimal and almost minimal rank~1 lattice rules, exact on trigonometric polynomials in two variables},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {125--134},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a3/}
}
TY  - JOUR
AU  - M. V. Noskov
AU  - N. N. Osipov
TI  - Minimal and almost minimal rank~1 lattice rules, exact on trigonometric polynomials in two variables
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2004
SP  - 125
EP  - 134
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a3/
LA  - ru
ID  - SJVM_2004_7_2_a3
ER  - 
%0 Journal Article
%A M. V. Noskov
%A N. N. Osipov
%T Minimal and almost minimal rank~1 lattice rules, exact on trigonometric polynomials in two variables
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2004
%P 125-134
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a3/
%G ru
%F SJVM_2004_7_2_a3
M. V. Noskov; N. N. Osipov. Minimal and almost minimal rank~1 lattice rules, exact on trigonometric polynomials in two variables. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 2, pp. 125-134. http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a3/

[1] Mysovskikh I. P., Interpolyatsionnye kubaturnye formuly, Nauka, M., 1981 | MR | Zbl

[2] Schmid H. J., Interpolatorische Kubaturformeln, Diss. Math. CCXX, 1983, 1–122 | MR

[3] Osipov N. N., “O minimalnykh kubaturnykh formulakh dannoi trigonometricheskoi tochnosti v 2-mernom sluchae”, Kubaturnye formuly i ikh prilozheniya, Doklady, predstavlennye na III seminar-soveschanie “Kubaturnye formuly i ikh prilozheniya”, IMVTs UNTs RAN, Ufa, 1996, 52–60

[4] Bannai E., Damerell R. M., “Tight spherical designs. I”, J. Math. Soc. Japan, 31 (1979), 199–207 | DOI | MR | Zbl

[5] Bannai E., Damerell R. M., “Tight spherical designs. II”, J. London Math. Soc., 21 (1980), 13–30 | DOI | MR | Zbl

[6] Reznick B., “Some constructions of spherical 5-designs”, Linear Algebra and its Applications, 226–228 (1995), 163–196 | DOI | MR | Zbl

[7] Kashkin V. B., Noskov M. V., Osipov N. N., “Variant diskretnogo preobrazovaniya Fure s uzlami na parallelepipedalnykh setkakh”, Zhurn. vychisl. matem. i mat. fiz., 41:3 (2001), 355–359 | MR | Zbl

[8] Kashkin V. B., Noskov M. V., Osipov N. N., “Application of Latticed Cubature Formulas to 2D Discrete Fourier Transform”, Pattern Recognition and Image Analysis, 12:4 (2002), 397–399

[9] Bleikhut P., Bystrye algoritmy tsifrovoi obrabotki signalov, Mir, M., 1989 | MR

[10] Noskov M. V., “Kubaturnye formuly dlya priblizhennogo integrirovaniya periodicheskikh funktsii”, Metody vychislenii, Vyp. 14, Izd-vo Leningradskogo un-ta, L., 1985, 15–23 | MR

[11] Kostrikin A. I., Manin Yu. I., Lineinaya algebra i geometriya, Nauka, M., 1986 | MR

[12] Cools R., Sloan I. H., “Minimal cubature formulae of trigonometric degree”, Math. Comp., 65:216 (1996), 1583–1600 | DOI | MR | Zbl

[13] Osipov N. N., “O postroenii serii reshetchatykh kubaturnykh formul ranga 1, tochnykh na trigonometricheskikh mnogochlenakh”, Zhurn. vychisl. matem. i mat. fiz., 42:11 (2002), 1627–1635 | MR

[14] Noskov M. V., “Formuly priblizhennogo integrirovaniya periodicheskikh funktsii”, Metody vychislenii, Vyp. 15, Izd-vo Leningradskogo un-ta, L., 1988, 19–22 | MR

[15] Noskov M. V., “O postroenii kubaturnykh formul povyshennoi trigonometricheskoi tochnosti”, Metody vychislenii, Vyp. 16, Izd-vo Leningradskogo un-ta, L., 1991, 16–23