Minimal and almost minimal rank~1 lattice rules, exact on trigonometric polynomials in two variables
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 2, pp. 125-134

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-dimensional rank 1 lattice rules of trigonometric degree $d$ $(d\geq 1)$ are characterized. The number of nodes of these cubature formulas is minimal or differs from minimal by one for even $d$, or by two for odd $d$.
@article{SJVM_2004_7_2_a3,
     author = {M. V. Noskov and N. N. Osipov},
     title = {Minimal and almost minimal rank~1 lattice rules, exact on trigonometric polynomials in two variables},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {125--134},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a3/}
}
TY  - JOUR
AU  - M. V. Noskov
AU  - N. N. Osipov
TI  - Minimal and almost minimal rank~1 lattice rules, exact on trigonometric polynomials in two variables
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2004
SP  - 125
EP  - 134
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a3/
LA  - ru
ID  - SJVM_2004_7_2_a3
ER  - 
%0 Journal Article
%A M. V. Noskov
%A N. N. Osipov
%T Minimal and almost minimal rank~1 lattice rules, exact on trigonometric polynomials in two variables
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2004
%P 125-134
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a3/
%G ru
%F SJVM_2004_7_2_a3
M. V. Noskov; N. N. Osipov. Minimal and almost minimal rank~1 lattice rules, exact on trigonometric polynomials in two variables. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 2, pp. 125-134. http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a3/