Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2004_7_2_a3, author = {M. V. Noskov and N. N. Osipov}, title = {Minimal and almost minimal rank~1 lattice rules, exact on trigonometric polynomials in two variables}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {125--134}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a3/} }
TY - JOUR AU - M. V. Noskov AU - N. N. Osipov TI - Minimal and almost minimal rank~1 lattice rules, exact on trigonometric polynomials in two variables JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2004 SP - 125 EP - 134 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a3/ LA - ru ID - SJVM_2004_7_2_a3 ER -
%0 Journal Article %A M. V. Noskov %A N. N. Osipov %T Minimal and almost minimal rank~1 lattice rules, exact on trigonometric polynomials in two variables %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2004 %P 125-134 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a3/ %G ru %F SJVM_2004_7_2_a3
M. V. Noskov; N. N. Osipov. Minimal and almost minimal rank~1 lattice rules, exact on trigonometric polynomials in two variables. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 2, pp. 125-134. http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a3/
[1] Mysovskikh I. P., Interpolyatsionnye kubaturnye formuly, Nauka, M., 1981 | MR | Zbl
[2] Schmid H. J., Interpolatorische Kubaturformeln, Diss. Math. CCXX, 1983, 1–122 | MR
[3] Osipov N. N., “O minimalnykh kubaturnykh formulakh dannoi trigonometricheskoi tochnosti v 2-mernom sluchae”, Kubaturnye formuly i ikh prilozheniya, Doklady, predstavlennye na III seminar-soveschanie “Kubaturnye formuly i ikh prilozheniya”, IMVTs UNTs RAN, Ufa, 1996, 52–60
[4] Bannai E., Damerell R. M., “Tight spherical designs. I”, J. Math. Soc. Japan, 31 (1979), 199–207 | DOI | MR | Zbl
[5] Bannai E., Damerell R. M., “Tight spherical designs. II”, J. London Math. Soc., 21 (1980), 13–30 | DOI | MR | Zbl
[6] Reznick B., “Some constructions of spherical 5-designs”, Linear Algebra and its Applications, 226–228 (1995), 163–196 | DOI | MR | Zbl
[7] Kashkin V. B., Noskov M. V., Osipov N. N., “Variant diskretnogo preobrazovaniya Fure s uzlami na parallelepipedalnykh setkakh”, Zhurn. vychisl. matem. i mat. fiz., 41:3 (2001), 355–359 | MR | Zbl
[8] Kashkin V. B., Noskov M. V., Osipov N. N., “Application of Latticed Cubature Formulas to 2D Discrete Fourier Transform”, Pattern Recognition and Image Analysis, 12:4 (2002), 397–399
[9] Bleikhut P., Bystrye algoritmy tsifrovoi obrabotki signalov, Mir, M., 1989 | MR
[10] Noskov M. V., “Kubaturnye formuly dlya priblizhennogo integrirovaniya periodicheskikh funktsii”, Metody vychislenii, Vyp. 14, Izd-vo Leningradskogo un-ta, L., 1985, 15–23 | MR
[11] Kostrikin A. I., Manin Yu. I., Lineinaya algebra i geometriya, Nauka, M., 1986 | MR
[12] Cools R., Sloan I. H., “Minimal cubature formulae of trigonometric degree”, Math. Comp., 65:216 (1996), 1583–1600 | DOI | MR | Zbl
[13] Osipov N. N., “O postroenii serii reshetchatykh kubaturnykh formul ranga 1, tochnykh na trigonometricheskikh mnogochlenakh”, Zhurn. vychisl. matem. i mat. fiz., 42:11 (2002), 1627–1635 | MR
[14] Noskov M. V., “Formuly priblizhennogo integrirovaniya periodicheskikh funktsii”, Metody vychislenii, Vyp. 15, Izd-vo Leningradskogo un-ta, L., 1988, 19–22 | MR
[15] Noskov M. V., “O postroenii kubaturnykh formul povyshennoi trigonometricheskoi tochnosti”, Metody vychislenii, Vyp. 16, Izd-vo Leningradskogo un-ta, L., 1991, 16–23