Approximate solution of variational problems for the mixed type nonlocal functionals
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 2, pp. 115-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There are considered variational problems for the mixed type nonlocal functionals. The application of the Ritz method and the method of least square for the quadratic functionals of the above-mentioned type are investigated.
@article{SJVM_2004_7_2_a2,
     author = {G. A. Kamenskii and E. M. Varfolomeev},
     title = {Approximate solution of variational problems for the mixed type nonlocal functionals},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {115--123},
     year = {2004},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a2/}
}
TY  - JOUR
AU  - G. A. Kamenskii
AU  - E. M. Varfolomeev
TI  - Approximate solution of variational problems for the mixed type nonlocal functionals
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2004
SP  - 115
EP  - 123
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a2/
LA  - en
ID  - SJVM_2004_7_2_a2
ER  - 
%0 Journal Article
%A G. A. Kamenskii
%A E. M. Varfolomeev
%T Approximate solution of variational problems for the mixed type nonlocal functionals
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2004
%P 115-123
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a2/
%G en
%F SJVM_2004_7_2_a2
G. A. Kamenskii; E. M. Varfolomeev. Approximate solution of variational problems for the mixed type nonlocal functionals. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 2, pp. 115-123. http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a2/

[1] Kamenskii G. A., “Boundary value problems for differential-difference equations arising from variational problems”, Nonlinear Analysis, Theory Methods Appl., 18:8 (1992), 801–813 | DOI | MR

[2] Kamenskii G. A., “A review of the theory of mixed functional-difference equations”, Problems of Nonlinear Analysis in Engineering Systems, 2:8 (1998), 1–16

[3] Kopylov A. F., “Method of finite differences of numerical solution of the mixed type differential-difference equation”, Siberian J. of Numer. Mathematics / Sib. Branch of Acad. of Sci. — Novosibirsk, 3:4 (2000), 345–355 (in Russian) | Zbl

[4] Marchuk G. I., Agoshkov V. I., Introduction to Projection-Grid Methods, Nauka, Moscow, 1981 (in Russian) | MR

[5] Mikhlin S. G., Direct Methods in Mathematical Physics, Gostekhizdat, Moscow, 1950 (in Russian)