Approximate solution of variational problems for the mixed type nonlocal functionals
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 2, pp. 115-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are considered variational problems for the mixed type nonlocal functionals. The application of the Ritz method and the method of least square for the quadratic functionals of the above-mentioned type are investigated.
@article{SJVM_2004_7_2_a2,
     author = {G. A. Kamenskii and E. M. Varfolomeev},
     title = {Approximate solution of variational problems for the mixed type nonlocal functionals},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {115--123},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a2/}
}
TY  - JOUR
AU  - G. A. Kamenskii
AU  - E. M. Varfolomeev
TI  - Approximate solution of variational problems for the mixed type nonlocal functionals
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2004
SP  - 115
EP  - 123
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a2/
LA  - en
ID  - SJVM_2004_7_2_a2
ER  - 
%0 Journal Article
%A G. A. Kamenskii
%A E. M. Varfolomeev
%T Approximate solution of variational problems for the mixed type nonlocal functionals
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2004
%P 115-123
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a2/
%G en
%F SJVM_2004_7_2_a2
G. A. Kamenskii; E. M. Varfolomeev. Approximate solution of variational problems for the mixed type nonlocal functionals. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 2, pp. 115-123. http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a2/

[1] Kamenskii G. A., “Boundary value problems for differential-difference equations arising from variational problems”, Nonlinear Analysis, Theory Methods Appl., 18:8 (1992), 801–813 | DOI | MR

[2] Kamenskii G. A., “A review of the theory of mixed functional-difference equations”, Problems of Nonlinear Analysis in Engineering Systems, 2:8 (1998), 1–16

[3] Kopylov A. F., “Method of finite differences of numerical solution of the mixed type differential-difference equation”, Siberian J. of Numer. Mathematics / Sib. Branch of Acad. of Sci. — Novosibirsk, 3:4 (2000), 345–355 (in Russian) | Zbl

[4] Marchuk G. I., Agoshkov V. I., Introduction to Projection-Grid Methods, Nauka, Moscow, 1981 (in Russian) | MR

[5] Mikhlin S. G., Direct Methods in Mathematical Physics, Gostekhizdat, Moscow, 1950 (in Russian)