Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2004_7_2_a1, author = {A. I. Zadorin and O. V. Kharina}, title = {Numerical method for a~system of linear equations of second order with a~small parameter on a~semi-infinite interval}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {103--114}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a1/} }
TY - JOUR AU - A. I. Zadorin AU - O. V. Kharina TI - Numerical method for a~system of linear equations of second order with a~small parameter on a~semi-infinite interval JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2004 SP - 103 EP - 114 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a1/ LA - ru ID - SJVM_2004_7_2_a1 ER -
%0 Journal Article %A A. I. Zadorin %A O. V. Kharina %T Numerical method for a~system of linear equations of second order with a~small parameter on a~semi-infinite interval %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2004 %P 103-114 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a1/ %G ru %F SJVM_2004_7_2_a1
A. I. Zadorin; O. V. Kharina. Numerical method for a~system of linear equations of second order with a~small parameter on a~semi-infinite interval. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 2, pp. 103-114. http://geodesic.mathdoc.fr/item/SJVM_2004_7_2_a1/
[1] Abramov A. A., “O perenose usloviya ogranichennosti dlya nekotorykh sistem obyknovennykh lineinykh differentsialnykh uravnenii”, Zhurn. vychisl. matem. i mat. fiz., 1:4 (1961), 733–737 | MR | Zbl
[2] Abramov A. A., Balla K., Konyukhova N. B., “Perenos granichnykh uslovii iz osobykh tochek dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii”, Soobsch. po vychisl. matem., VTs AN SSSR, M., 1981 | MR
[3] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions, World Scientific, Singapore, 1996 | MR
[4] Harina O. V., Zadorin A. I., “Numerical solution of a boundary value problem for a linear system of equations with a small parameter on a half-infinite interval”, Proceedings of the International Conference on Computational Mathematics, Part 2, Novosibirsk, 2002, 449–453 | MR
[5] Bellman R., “Some Inequalities for the Square Root of a Positive Definite Matrix”, Linear Algebra and its Applications, 1:3 (1968), 321–324 | DOI | MR
[6] Freiling G., Jank G., Abou-Kandil H., “Generalized Riccati Difference and Differential Equations”, Linear Algebra and Its Applications, 241–243 (1996), 291–303 | DOI | MR | Zbl
[7] Royden H. L., “Comparison theorems for the matrix Riccati equation”, Comm. Pure and Appl. Math., 41 (1988), 739–746 | DOI | MR | Zbl
[8] Pulay P., “An Iterative Method for the Determination of the Square Root of a Positive Definite Matrix”, Zamm., 46 (1966), 151–152 | DOI | MR
[9] Ikramov Kh. D., Chislennoe reshenie matrichnykh uravnenii, Nauka, M., 1984 | MR | Zbl
[10] Zadorin A. I., “Reduktsiya nelineinoi kraevoi zadachi dlya sistemy uravnenii vtorogo poryadka s malym parametrom s polubeskonechnogo intervala k konechnomu”, Sibirskii matem. zhurn., 42:5 (2001), 1057–1066 | MR | Zbl
[11] Abramov A. A., Balla K., “O priblizhennykh resheniyakh, osnovannykh na teoremakh sravneniya, skalyarnykh i matrichnykh uravnenii Rikkati na beskonechnom intervale”, Zhurn. vychisl. matem. i mat. fiz., 33:1 (1993), 35–51 | MR | Zbl