Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2004_7_1_a2, author = {M. R. Larin}, title = {On a~multigrid method for solving partial eigenproblems}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {25--42}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJVM_2004_7_1_a2/} }
M. R. Larin. On a~multigrid method for solving partial eigenproblems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 7 (2004) no. 1, pp. 25-42. http://geodesic.mathdoc.fr/item/SJVM_2004_7_1_a2/
[1] Brandt A., McCormick S., Ruge J., “Multigrid methods for differential eigenproblems”, SIAM J. Sci. Stat. Comput., 4:2 (1983), 244–260 | DOI | MR | Zbl
[2] Hackbusch W., Multigrid Methods and Applications, Springer-Verlag, 1985 | MR | Zbl
[3] Knyazev A. V., “Preconditioned eigensolvers – an oxymoron?”, ETNA, 7 (1998), 104–123 | MR | Zbl
[4] Knyazev A. V., “Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method”, SIAM J. Sci. Comput., 23 (2001), 517–541 | DOI | MR | Zbl
[5] Larin M., “An optimal multilevel method for computing the smallest eigenpair”, NCC Bulletin, Series Num. Anal., 9, NCC Publisher, Novosibirsk, 2000, 59–67
[6] Larin M., “On a multigrid eigensolver for linear elasticity problems”, Lecture Notes in Computer Science, 2542, 2003, 182–191 | MR | Zbl
[7] Parlett B., The Symmetric Eigenvalue Problem, Prentice-Hall, Inc., 1980 | MR | Zbl
[8] Trottenberg U., Oosterlee C., Schüller A., Multigrid, Academic Press, 2001 | MR | Zbl
[9] Wesseling P., An Introduction to Multigrid Methods, John Wiley Sons Ltd., 1992 | MR | Zbl