Simulation of seismic wave propagation in heterogeneous media
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 4, pp. 415-429.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a review of numerical methods for calculation of seismic wave fields in heterogeneous elastic media. In addition, a special attention is being given to the method for the calculation of transient wave fields for viscoelastic media models. The method is based on a combination of the integral Laguerre transform (with respect to time) with the Fourier–Bessel transform along the radial coordinate and a finite difference technique with respect to the vertical coordinate. Some examples of the calculation of seismic wave fields are given.
@article{SJVM_2003_6_4_a6,
     author = {B. G. Mikhailenko},
     title = {Simulation of seismic wave propagation in heterogeneous media},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {415--429},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_4_a6/}
}
TY  - JOUR
AU  - B. G. Mikhailenko
TI  - Simulation of seismic wave propagation in heterogeneous media
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 415
EP  - 429
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_4_a6/
LA  - en
ID  - SJVM_2003_6_4_a6
ER  - 
%0 Journal Article
%A B. G. Mikhailenko
%T Simulation of seismic wave propagation in heterogeneous media
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 415-429
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_4_a6/
%G en
%F SJVM_2003_6_4_a6
B. G. Mikhailenko. Simulation of seismic wave propagation in heterogeneous media. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 4, pp. 415-429. http://geodesic.mathdoc.fr/item/SJVM_2003_6_4_a6/

[1] Alekseev A. S., Gelchinsky B. Y., “On determination of head waves intensity in elasticity theory by the ray method”, Dokl. Acad. Nauk SSSR, 118:4 (1958), 661–664 | MR | Zbl

[2] Alekseev A. S., Gelchinsky B. Y., “The ray method for calculation of wave field for heterogeneous media with curvelineas boundaries”, On Questions of Dynamic Theory of Seismic Waves Propagation, 3 (1959), 16–47

[3] Alekseev A. S., Babich V. M., Gelchinsky B. Y., “The ray method for calculation of wave fronts intensity”, On Questions of Dynamic Theory of Seismic Waves Propagation, 5 (1961), 3–24

[4] Alekseev A. S., Mikhailenko B. G., “Solution of Lamb's problem for a vertically inhomogeneous half-space”, Izv. Akad. Nauk SSSR, Fiz. Zemli., 12 (1976), 11–25

[5] Alekseev A. S., Mikhailenko B. G., “Numerical modeling of seismic waves propagation in radial inhomogeneous Earth's model”, Dokl. Akad. Nauk SSSR, 214 (1977), 84–86

[6] Alekseev A. S., Mikhailenko B. G., “Method of calculation of theoretical seismograms for complex models of media”, Dokl. Akad. Nauk SSSR, 240 (1978), 1062–1065

[7] Alekseev A. S., Mikhailenko B. G., “Solution of dynamic problems of elastic wave propagation in inhomogeneous media by a combination of partial separation of variables and finite difference methods”, Geophysics, 48 (1980), 161–172

[8] Alekseev A. S., Mikhailenko B. G., “Non-ray phenomena in theory elastic wave propagation”, Dokl. Akad. Nauk SSSR, 267:5 (1982), 1079–1083

[9] Alford R. M., Kelly K. R., Boore D. M., “Accuracy of finite-difference modeling of the acoustic wave equation”, Geophysics, 39 (1974), 834–842

[10] Alterman Z. S., Aboudi J., Karal F. C., “Pulse propagation in a laterally heterogeneous solid elastic sphere”, Geophys. J. R. Astr. Soc., 21 (1970), 243–260 | Zbl

[11] Babich V. M., Alekseev A. S., “A ray method of computing wave front intensities”, Bull. Acad. Sei. USSR, Geophys. Ser., 1 (1958), 9–15

[12] Carcione J. M., Kosloff R., “Wave propagation simulation in a linear viscoelastic medium”, Geophys. J. R. Astr. Soc., 95 (1988), 597–611 | Zbl

[13] Carcione J. M., Wang J. P., “A Chebyshev collocation method for the elastodynamic equation in generalized coordinates”, Comput. Fluid Dynamics J., 2 (1993), 269–290

[14] Cerveny V., Molotkov I. A., Psencik I., Ray method in seismology, Charles Univ. Press, Prague, 1977

[15] Christensen R. M., Theory of Viscoelasticity: an Introduction, 2nd ed., Academic Press, Inc., New York, 1982

[16] Cummins P. R., Takeuchi N., Geller R. J., “Computation of complete synthetic seismograms for laterally heterogeneous modes using the direct solution method”, Geophys. J. Int., 130 (1997), 1–16 | DOI

[17] Dablain M. A., “The application of high-order differencing to the scalar wave equation”, Geophysics, 51 (1986), 54–66 | DOI

[18] Faccioli E., Maggio F., Quarteroni A., Tagliani A., “Spectral-domain decomposition methods for the solution of acoustic and elastic wave equations”, Geophysics, 61:4 (1996), 1160–1174 | DOI

[19] Fatianov A. G., Mikhailenko B. G., “The method of calculation wave fields in non-elastic inhomogeneous medium”, Dokl. Akad. Nauk. SSSR, 301:4 (1988), 833–839

[20] Fatianov A. G., Numerical modeling wave fields in heterogeneous nonelastic sphere, Preprint RAN. Siberian Branch. Computing Center; 22, Novosibirsk, 1988

[21] Fuchs K., Muller G., “Computation of synthetic seismograms with the reflectivity method and comparison with observations”, Geophys. J. R. Astr. Soc., 23 (1971), 417–433

[22] Geller R. J., Hara T., Tsuboi S., Ohminato T., A new algorithm for waveform inversion using a laterally heterogeneous starting model, Seismology Society of Japan Fall Meeting, Tokyo, 1990 (in Japanese)

[23] Geller R. J., Ohminato T., “Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the direct solution method”, Geophys. J. Int., 116 (1994), 421–446 | DOI

[24] Haskell N. A., “The dispersion of surface waves in multi-layered media”, Bull. Seism. Soc. Am., 43 (1953), 17–43 | MR

[25] Heiner I., “Wave propagation in three-dimensional spherical sections by the Chebyshev spectral method”, Geophys. J. Int., 136 (1999), 559–566 | DOI

[26] Holdberg O., “Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena”, Geophys. Prosp., 35 (1987), 629–655 | DOI

[27] Hron F., Introduction to the Ray Theory in a Broader Sense: Application to Seismology. Textbook of Laboratorie de Physique de l'Ecole Normale Superieure, Universite de Paris, Paris, 1968

[28] Hron F., Mikhailenko B. G., “Numerical modeling of nongeometrical effects by the Alekseev–Mikhailenko method”, Bull. Soc. Am., 71:4 (1981), 1011–1099 | MR

[29] Igel H., Weber M., “P-SW wave propagation in Earth's mantle using finite differences: application to heterogeneous lowermost mantle structure”, Geophys. Res. Lett., 23 (1996), 415–418 | DOI

[30] Jo C. H., Shin C. S., Suh J. H., “An optimal 9-point, finite-difference, frequency-space, 2D scalar wave extrapolator”, Geophysics, 61 (1996), 529–537 | DOI

[31] Kelly K. R., Ward R. W., Treitel S., Alford R. M., “Synthetic seismograms: a finite difference approach”, Geophysics, 41 (1976), 2–27 | DOI

[32] Konyukh G. V., Mikhailenko B. G., “Numerical-analytical algorithm for seismic forward modeling”, Proc. of the VII-th Russian School-Seminar Modern Problems of Mathematical Modeling, Rostov State University, Rostov-na-Donu, 1997, 66–70

[33] Konyukh G. V., Mikhailenko B. G., “Application of integral Laguerre transformation in solving dynamic seismic problems”, Proc. ICMMG, Ser. Mathematical Modeling in Geophysics, 5, Institute of Comp. Math. and Mathem. Geophys. SB RAS, Novosibirsk, 1998, 79–90

[34] Kosloff D., Baysal E., “Forward modeling by a Fourier method”, Geophysics, 47 (1982), 1402–1412 | DOI

[35] Kosloff D., Kessler D., Filho F. Q., Tessmer E., Behle A., Strahilevitz R., “Solution of equations of dynamic elasticity by a Chebyshev spectral method”, Geophysics, 55 (1990), 734–748 | DOI

[36] Levander A. R., “Fourth-order finite-difference P-SV seismograms”, Geophysics, 53 (1988), 1425–1436 | DOI

[37] Liu H. P., Anderson D. L., Kanamori H., “Velocity dispersion due to elasticity: implications for seismology and mantle composition”, Geophys. J. R. Astr. Soc., 47 (1976), 41–58

[38] L. Drake, “A finite-element method for seismology”, Surface Waves and Earth Oscillations, Methods in Computational Physics, Seismology, 11, ed. B. A. Bolt, Academic Press, Inc., 1972, 181–216

[39] Marfurt K. J., “Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations”, Geophysics, 49 (1984), 533–549 | DOI

[40] Marfurt K. J., Shin C. S., “The future of iterative modeling in geophysical exploration”, Supercomputers in Seismic Exploration, Handbook of Geophysical Exploration: I Seismic Exploration, 21, ed. E. Eisner, Pergamon Press, 1989, 203–228

[41] Mikhailenko B. G., “The method of solution of dynamic seismic problems for 2D inhomogeneous media models”, Dokl. Akad. Nauk SSSR, 246 (1979), 47–51 | MR

[42] Mikhailenko B. G., “Synthetic seismograms for complex 3D geometries using an analytical-numerical algorithm”, Geophys. J. R. Astron. Soc., 79 (1984), 963–986 | Zbl

[43] Mikhailenko B. G., “Numerical experiment in seismic investigations”, J. Geophys., 58 (1985), 101–124

[44] Mikhailenko B. G., Seismic fields in complex media, Publishing House Sib. Div. USSR Acad. Sci., Novosibirsk, 1988

[45] Mikhailenko B. G., “Forward seismic modeling by the spectral Laguerre method”, 66-th Annual Internal. Mtg. Soc. Expl. Geophys. Expanded Abstracts, 1998, 1784–1787

[46] Mikhailenko B. G., “Spectral Laguerre method for the approximate solution of time depended problems”, Appl. Math. Lett., 12 (1999), 105–110 | DOI | MR | Zbl

[47] Mikhailenko B. G., “Seismic modeling by the spectral-finite difference method”, Physics of the Earth and Planetary Interiors, 119 (2000), 133–147 | DOI

[48] Mikhailenko B. G., Soboleva O. N., “Numerical modeling of seismic waves for the radial heterogeneous spherical Earth”, NCC Bulletin. Series Math. Model. in Geoph., 5 (1999), 115–120 | Zbl

[49] Mikhailenko B. G., Mikhailov A. A., Reshetova G. V., “Numerical viscoelastic modelling by the spectral Laguerre method”, Geophys. Prosp., 51 (2003), 37–48 | DOI

[50] Molotkov L. A., Matrix Method in the Theory of Wave Propagation in Laminar Elastic and Liquid Media, Nauka, Leningrad, 1984

[51] Müller G., “The reflectivity method: a tutorial”, J. Geophys., 58 (1985), 153–174

[52] Robert J. G., Ohminato T., “Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the direct solution method”, Geophys. J. Int., 116 (1994), 421–446 | DOI

[53] Štekl I., Pratt R. G., “Accurate viscoelastic modeling by frequency-domain finite difference using rotated operators”, Geophysics, 63:5 (1998), 1779–1794 | DOI

[54] Tal-Ezer H. D., Kosloff D., Koren Z., “An accurate scheme for seismic forward modeling”, Geophys. Prosp., 35 (1987), 479–490 | DOI

[55] Tarantola A., “Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation”, Pure and Applied Geophysics, 128 (1988), 365–399 | DOI

[56] Tessmer E., Kosloff D., “3D elastic modeling with surface topography by a Chebyshev spectral method”, Geophysics, 59 (1994), 464–473 | DOI

[57] Thomson W. T., “Transmission of elastic waves through a stratified solid”, J. Appl. Phys., 21 (1950), 89–93 | DOI | MR | Zbl

[58] Virieux J., “P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method”, Geophysics, 51 (1986), 889–901 | DOI

[59] Wysession M. E., Shore P. J., “Visualization of whole mantle propagation of seismic shear energy using normal mode summation”, Pure and Applied Geophysics, 142 (1994), 295–310 | DOI