Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2003_6_4_a1, author = {S. V. Gol'din}, title = {Geometrical fundamentals of seismic imaging: realization of contact mappings}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {323--345}, publisher = {mathdoc}, volume = {6}, number = {4}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_4_a1/} }
TY - JOUR AU - S. V. Gol'din TI - Geometrical fundamentals of seismic imaging: realization of contact mappings JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2003 SP - 323 EP - 345 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2003_6_4_a1/ LA - en ID - SJVM_2003_6_4_a1 ER -
S. V. Gol'din. Geometrical fundamentals of seismic imaging: realization of contact mappings. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 4, pp. 323-345. http://geodesic.mathdoc.fr/item/SJVM_2003_6_4_a1/
[1] Alkhalifah T., “An acoustic wave equation for anisotropic media”, Geophysics, 65:4 (2000), 1239–1250 | DOI
[2] Claerbout J. F., Imaging the Earth Interior, Backwell Scientific Publications, Oxford–London–Edinburgh–Boston–Palo Alto–Victoria, 1985
[3] De Hoop M. V., “Generalization of the bremmer coupling series”, J. Math. Phys., 37 (1996), 3246–3282 | DOI | MR | Zbl
[4] Fomel S. B., “Kinematically equivalent differential operator for offset continuation of reflected wave seismograms”, Russian Geology and Geophysics, 35:9 (1994), 122–134
[5] Gazdag J., “Wave-equation migration with the phase-shift method”, Geophysics, 43 (1978), 1342–1351 | DOI
[6] Groldin S. V., “Kinematical aspect in the problem of continuation of seismic wave fields”, Soviet Geol. Geophys., 23:2 (1982), 107–115
[7] Groldin S., “Inverse kinematical problems of reflection seismology-II. Problems of downward field continuation”, Geophys. J. R. Astr. Soc., 79 (1984), 327–337
[8] Goldin S. V., “Integral continuation of wave fields”, Russian Geology and Geophysics, 4 (1985), 103–113 (in Russian)
[9] Goldin S., Seismic traveltime inversion, Series: Investigations in Geophysics, 1, SEG, Tulsa, USA, 1986, 363
[10] Goldin S. V., Toward a general theory of wave field continuation, Proc. Institute of Geolog. and Geophys., no. 8, Novosibirsk, 1986, 1–45 (in Russian)
[11] Goldin S. V., Transformation and reconstruction of discontinuities in the tomographic type problems, Proc. Institute of Geolog. and Geophys., Novosibirsk, 1988, 1–100 (in Russian) | Zbl
[12] Groldin S. V., “Superposition and continuation of transformations used in seismic migration”, Russian Geology and Geophysics, 35:9 (1994), 109–121
[13] Groldin S. V., “Geometric fundamentals of seismic imaging: a geometric theory of the upper level”, Series: Seismic Applications, 2, Geophysical Press, London, 1998, 45–72
[14] Etale I. D., “Dip-moveout by Fourier transform”, Geophysics, 49 (1984), 741–757 | DOI
[15] Olver F. W. J., Introduction to Asymptotics and Special Functions, Academic Press, New York and London, 1974 | MR
[16] Petrashen' G. I., Nakhamkin S. A., Continuation of Wave Fields in the Problems of Seismic Prospecting, Nauka, Leningrad, 1973 (in Russian)
[17] Poston T., Stewart I., Catastrophe Theory and its Application, Pitman, London, 1978 | MR | Zbl
[18] Romanov V. G., Inverse Problems of Mathematical Physics, UNV Science Press, Utrecht, Netherlands, 1987 | MR
[19] Smirnov V. I., A Course of Higher Mathematics, Vol. IV, Pergamon Press, Oxford, 1964
[20] Taylor M. E., Pseudodifferential Operators. Princeton Mathematical Series, Princeton University Press, Princeton, New Jersey, 1981 | MR | Zbl