Geometrical fundamentals of seismic imaging: realization of contact mappings
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 4, pp. 323-345.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a general formulation of the seismic imaging process on the base of ray theory is proposed. Media and wavefields are considered within geometrical seismics: a medium consists of reflectors and refractors, a useful component of the wave field coinciding with basic terms of a ray series. As connections of reflectors and seismic traveltime surfaces belong to a class of contact mappings, the problem of migration is posed as realization of a given contact mapping in a class of wavefield transforms (including the class of pseudodifferential operators.
@article{SJVM_2003_6_4_a1,
     author = {S. V. Gol'din},
     title = {Geometrical fundamentals of seismic imaging: realization of contact mappings},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {323--345},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_4_a1/}
}
TY  - JOUR
AU  - S. V. Gol'din
TI  - Geometrical fundamentals of seismic imaging: realization of contact mappings
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 323
EP  - 345
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_4_a1/
LA  - en
ID  - SJVM_2003_6_4_a1
ER  - 
%0 Journal Article
%A S. V. Gol'din
%T Geometrical fundamentals of seismic imaging: realization of contact mappings
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 323-345
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_4_a1/
%G en
%F SJVM_2003_6_4_a1
S. V. Gol'din. Geometrical fundamentals of seismic imaging: realization of contact mappings. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 4, pp. 323-345. http://geodesic.mathdoc.fr/item/SJVM_2003_6_4_a1/

[1] Alkhalifah T., “An acoustic wave equation for anisotropic media”, Geophysics, 65:4 (2000), 1239–1250 | DOI

[2] Claerbout J. F., Imaging the Earth Interior, Backwell Scientific Publications, Oxford–London–Edinburgh–Boston–Palo Alto–Victoria, 1985

[3] De Hoop M. V., “Generalization of the bremmer coupling series”, J. Math. Phys., 37 (1996), 3246–3282 | DOI | MR | Zbl

[4] Fomel S. B., “Kinematically equivalent differential operator for offset continuation of reflected wave seismograms”, Russian Geology and Geophysics, 35:9 (1994), 122–134

[5] Gazdag J., “Wave-equation migration with the phase-shift method”, Geophysics, 43 (1978), 1342–1351 | DOI

[6] Groldin S. V., “Kinematical aspect in the problem of continuation of seismic wave fields”, Soviet Geol. Geophys., 23:2 (1982), 107–115

[7] Groldin S., “Inverse kinematical problems of reflection seismology-II. Problems of downward field continuation”, Geophys. J. R. Astr. Soc., 79 (1984), 327–337

[8] Goldin S. V., “Integral continuation of wave fields”, Russian Geology and Geophysics, 4 (1985), 103–113 (in Russian)

[9] Goldin S., Seismic traveltime inversion, Series: Investigations in Geophysics, 1, SEG, Tulsa, USA, 1986, 363

[10] Goldin S. V., Toward a general theory of wave field continuation, Proc. Institute of Geolog. and Geophys., no. 8, Novosibirsk, 1986, 1–45 (in Russian)

[11] Goldin S. V., Transformation and reconstruction of discontinuities in the tomographic type problems, Proc. Institute of Geolog. and Geophys., Novosibirsk, 1988, 1–100 (in Russian) | Zbl

[12] Groldin S. V., “Superposition and continuation of transformations used in seismic migration”, Russian Geology and Geophysics, 35:9 (1994), 109–121

[13] Groldin S. V., “Geometric fundamentals of seismic imaging: a geometric theory of the upper level”, Series: Seismic Applications, 2, Geophysical Press, London, 1998, 45–72

[14] Etale I. D., “Dip-moveout by Fourier transform”, Geophysics, 49 (1984), 741–757 | DOI

[15] Olver F. W. J., Introduction to Asymptotics and Special Functions, Academic Press, New York and London, 1974 | MR

[16] Petrashen' G. I., Nakhamkin S. A., Continuation of Wave Fields in the Problems of Seismic Prospecting, Nauka, Leningrad, 1973 (in Russian)

[17] Poston T., Stewart I., Catastrophe Theory and its Application, Pitman, London, 1978 | MR | Zbl

[18] Romanov V. G., Inverse Problems of Mathematical Physics, UNV Science Press, Utrecht, Netherlands, 1987 | MR

[19] Smirnov V. I., A Course of Higher Mathematics, Vol. IV, Pergamon Press, Oxford, 1964

[20] Taylor M. E., Pseudodifferential Operators. Princeton Mathematical Series, Princeton University Press, Princeton, New Jersey, 1981 | MR | Zbl