Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2003_6_3_a4, author = {V. I. Znak}, title = {Phase-synchronized-weighted median filter and some questions of estimation of quality of its response to a~frequency-modulated signal}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {269--278}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a4/} }
TY - JOUR AU - V. I. Znak TI - Phase-synchronized-weighted median filter and some questions of estimation of quality of its response to a~frequency-modulated signal JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2003 SP - 269 EP - 278 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a4/ LA - ru ID - SJVM_2003_6_3_a4 ER -
%0 Journal Article %A V. I. Znak %T Phase-synchronized-weighted median filter and some questions of estimation of quality of its response to a~frequency-modulated signal %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2003 %P 269-278 %V 6 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a4/ %G ru %F SJVM_2003_6_3_a4
V. I. Znak. Phase-synchronized-weighted median filter and some questions of estimation of quality of its response to a~frequency-modulated signal. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 3, pp. 269-278. http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a4/
[1] Znak V. I., “Vzveshennyi mediannyi filtr i obrabotka rezultatov vertikalnogo seismicheskogo profilirovaniya”, Problemno-orientirovannye vychislitelnye kompleksy, Novosibirsk, 1992, 78–85
[2] Duncan G., Beresford G., “Median filter behaviour with seismic data”, Geophysical Prospecting, 43 (1995), 329–345 | DOI
[3] Glinski B. M., Znak V. I., “Estimation of the propagation time of the vibroseismic waves”, Proceedings of the Vlth International Workshop “Distributed Data Processing”, RAS. Siberian Branch Publisher, Novosibirsk, 1998, 437–440
[4] Znak V. I., “Percenile filtering: some generalizations; the experience of geophysical data processing”, Bulletin of the Novosibirsk Computing center. Series: Mathematical Aspects of the Geophisycs, 1 (1998), 111–116
[5] Justusson B. I., “Median filtering: statistical properties: Two-dimensional digital signal processing, II”, $T$-transforms and Median Filters, Springer-Verlag, Berlin, 1981, 161–196
[6] Znak V. I., “Sinfazno-vzveshennyi mediannyi filtr: raschet vesov i obrabotka garmonicheskogo signala”, Sib. zhurn. vychisl. matematiki. / RAN. Sib otd-nie. — Novosibirsk, 4:1 (2001), 31–40 | MR
[7] Znak V. I., “Some models of noise signals and heuristic search for weighted-order statistics”, Math. Comput. Modelling, 18:7 (1993), 1–7 | DOI | Zbl
[8] Lee Y. H., Kassam S. A., “Generalized median filtering and related nonlinear filtering techniques”, IEEE Trans. Acoust., Speech, Signal Processing, 33:3 (1985), 672–683 | DOI
[9] Nikolaev A. V., “Vozmozhnost vibratsionnogo prosvechivaniya Zemli”, Izv. AN SSSR. Seriya: Fizika Zemli, 1975, no. 4, 10–21
[10] Alekseev A. S., Glinskii B. M., Kovalevskii V. V., Pushnoi B. M., “Vibroseismicheskie istochniki dlya globalnoi tomografii Zemli”, Problemno-orientirovannye vychislitelnye kompleksy, Novosibirsk, 1996, 18–29
[11] Kovalevskii V. V., Pushnoi B. M., Salavatov P. M., “Otsenka pogreshnosti izmereniya vibroseismicheskikh signalov”, Problemno-orientirovannye vychislitelnye kompleksy, Novosibirsk, 1996, 80–92