Spline interpolation of huge multivariate data
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 3, pp. 249-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the “true” multi-dimensional interpolation problem at scattered meshes with a huge number of interpolating points. For its solution we suggest here a new numerical technology consisting in partitioning of the problem on a number of subproblems and in a successive glueing of solutions to the subproblems. The basis of the partitioning method is the algorithm of optimal hyperplane, dividing a mesh in two intersected ones.
@article{SJVM_2003_6_3_a2,
     author = {A. Yu. Bezhaev},
     title = {Spline interpolation of huge multivariate data},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {249--261},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a2/}
}
TY  - JOUR
AU  - A. Yu. Bezhaev
TI  - Spline interpolation of huge multivariate data
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 249
EP  - 261
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a2/
LA  - en
ID  - SJVM_2003_6_3_a2
ER  - 
%0 Journal Article
%A A. Yu. Bezhaev
%T Spline interpolation of huge multivariate data
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 249-261
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a2/
%G en
%F SJVM_2003_6_3_a2
A. Yu. Bezhaev. Spline interpolation of huge multivariate data. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 3, pp. 249-261. http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a2/

[1] Duchon J., “Sur l'erreur d'interpolation des fonctions de plusieurs variables par les $D^m$-splines”, RAIRO, Anal. Numer., 12:4 (1978), 325–334 | MR | Zbl

[2] Franke R., “Smooth interpolation of scattered data by local thin plate splines”, Comp. Math. Appl., 8:4 (1982), 273–281 | DOI | MR | Zbl

[3] Bezhaev A. Yu., Vasilenko V. A., Variational Spline Theory, Bull. of the Novosibirsk Computing Center, Num. Anal., , Special issue 3, NCC Publisher, Novosibirsk, 1993