Spline interpolation of huge multivariate data
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 3, pp. 249-261
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper deals with the “true” multi-dimensional interpolation problem at scattered meshes with a huge number of interpolating points. For its solution we suggest here a new numerical technology consisting in partitioning of the problem on a number of subproblems and in a successive glueing of solutions to the subproblems. The basis of the partitioning method is the algorithm of optimal hyperplane, dividing a mesh in two intersected ones.
@article{SJVM_2003_6_3_a2,
author = {A. Yu. Bezhaev},
title = {Spline interpolation of huge multivariate data},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {249--261},
year = {2003},
volume = {6},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a2/}
}
A. Yu. Bezhaev. Spline interpolation of huge multivariate data. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 3, pp. 249-261. http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a2/
[1] Duchon J., “Sur l'erreur d'interpolation des fonctions de plusieurs variables par les $D^m$-splines”, RAIRO, Anal. Numer., 12:4 (1978), 325–334 | MR | Zbl
[2] Franke R., “Smooth interpolation of scattered data by local thin plate splines”, Comp. Math. Appl., 8:4 (1982), 273–281 | DOI | MR | Zbl
[3] Bezhaev A. Yu., Vasilenko V. A., Variational Spline Theory, Bull. of the Novosibirsk Computing Center, Num. Anal., , Special issue 3, NCC Publisher, Novosibirsk, 1993