An iterative method for computation of time-optimal control of quasilinear systems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 3, pp. 227-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

An iterative method of finding the time-optimal control for quasi-linear systems is considered. A system of linear algebraic equations is obtained, which relates deviations of the initial conditions of the normalized conjugate system and the deviation of the finite time to the deviations of phase coordinates resulted from nonlinearity. A numerical algorithm and its modifications are described. The convergence of the iterative procedure has been proved. Some examples are presented.
@article{SJVM_2003_6_3_a1,
     author = {V. M. Aleksandrov},
     title = {An iterative method for computation of time-optimal control of quasilinear systems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {227--247},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a1/}
}
TY  - JOUR
AU  - V. M. Aleksandrov
TI  - An iterative method for computation of time-optimal control of quasilinear systems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 227
EP  - 247
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a1/
LA  - ru
ID  - SJVM_2003_6_3_a1
ER  - 
%0 Journal Article
%A V. M. Aleksandrov
%T An iterative method for computation of time-optimal control of quasilinear systems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 227-247
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a1/
%G ru
%F SJVM_2003_6_3_a1
V. M. Aleksandrov. An iterative method for computation of time-optimal control of quasilinear systems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 3, pp. 227-247. http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a1/

[1] Neustadt L. W., “Synthesizing time optimal control systems”, J. Math. Analys. and Applic., 1:3–4 (1960), 484–493 | DOI | MR | Zbl

[2] Eaton J. H., “An iterative solution to time-optimal control”, J. Math. Analys. and Applic., 5:2 (1962), 329–344 | DOI | MR | Zbl

[3] Kirin N. E., “K resheniyu obschei zadachi lineinogo bystrodeistviya”, Avtomatika i telemekhanika, 25:1 (1964), 16–22 | MR | Zbl

[4] Gabasov R., Kirillova F. M., “Postroenie posledovatelnykh priblizhenii dlya nekotorykh zadach optimalnogo upravleniya”, Avtomatika i telemekhanika, 27:2 (1966), 5–17 | MR

[5] Pshenichnyi B. N., Sobolenko L. A., “Uskorennyi metod resheniya zadachi lineinogo bystrodeistviya”, Zhurn. vychisl. matem. i mat. fiziki, 8:6 (1968), 1343–1351

[6] Dubovitskii A. Ya., Rubtsov V. A., “Lineinye bystrodeistviya”, Zhurn. vychisl. matem. i mat. fiziki, 8:5 (1968), 937–949 | Zbl

[7] Gindes V. B., “Odin metod posledovatelnykh priblizhenii dlya resheniya lineinykh zadach optimalnogo upravleniya”, Zhurn. vychisl. matem. i mat. fiziki, 10:1 (1970), 216–223 | MR | Zbl

[8] Vasilev O. V., Tyatyushkin A. I., “K chislennomu resheniyu zadach lineinogo bystrodeistviya”, Differentsialnye i integralnye uravneniya, Vyp. 2, Izd-vo Irkutskogo un-ta, Irkutsk, 1973, 57–69

[9] Belolipetskii A. A., “Chislennyi metod resheniya lineinoi zadachi optimalnogo upravleniya svedeniem ee k zadache Koshi”, Zhurn. vychisl. matem. i mat. fiziki, 17:6 (1977), 1380–1386 | MR

[10] Dyurkovich E., “Chislennyi metod resheniya lineinykh zadach bystrodeistviya s otsenkoi tochnosti”, Doklady AN SSSR, 265:4 (1982), 793–797 | MR | Zbl

[11] Kiselev Yu. N., “Bystroskhodyaschiesya algoritmy dlya lineinogo optimalnogo bystrodeistviya”, Kibernetika, 62:6 (1990), 47–57 | MR | Zbl

[12] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[13] Aleksandrov V. M., “Chislennyi metod resheniya zadachi lineinogo bystrodeistviya”, Zhurn. vychisl. matem. i mat. fiziki, 38:6 (1998), 918–931 | MR | Zbl

[14] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961