Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2003_6_3_a0, author = {Owe Axelsson and M. Larin}, title = {An element-by-element version of variable-step multilevel preconditioning methods}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {209--226}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a0/} }
TY - JOUR AU - Owe Axelsson AU - M. Larin TI - An element-by-element version of variable-step multilevel preconditioning methods JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2003 SP - 209 EP - 226 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a0/ LA - en ID - SJVM_2003_6_3_a0 ER -
Owe Axelsson; M. Larin. An element-by-element version of variable-step multilevel preconditioning methods. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 3, pp. 209-226. http://geodesic.mathdoc.fr/item/SJVM_2003_6_3_a0/
[1] Axelsson O., Gustafsson I., “Preconditioning and two-level multigrid methods of arbitrary degree of approximation”, Math. Comp., 40 (1983), 219–242 | DOI | MR | Zbl
[2] Axelsson O., Barker V. A., Finite Element Solution of Boundary Value Problems: Theory and Computation, Academic Press, Inc., 1984 | MR | Zbl
[3] Axelsson O., Vassilevski P., “A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning”, SIAM J. Matrix Anal. Appl., 12 (1991), 625–644 | DOI | MR | Zbl
[4] Axelsson O., Vassilevski P., “Variable-step multilevel preconditioning methods. I: Self-adjoint and positive definite elliptic problems”, Numer. Lin. Alg. Appl., 1 (1994), 75–101 | DOI | MR | Zbl
[5] Axelsson O., Iterative Solution Methods, Cambridge University Press, New York, 1994 | MR | Zbl
[6] Axelsson O., Neytcheva M., “Scalable Algorithms for the Solution of Navier's Equations of Elasticity”, J. Comput. Appl. Math., 63 (1995), 149–178 | DOI | MR | Zbl
[7] Axelsson O., Padiy A., “On the additive version of the algebraic multilevel iteration method for anisotropic elliptic problems”, SIAM J. Sci. Comput., 20 (1999), 1807–1830 | DOI | MR | Zbl
[8] Il'in V. P., Iterative Incomplete Factorization Methods, World Scientific Publishing Co., Singapore, 1992 | MR
[9] Fadeev D. K., Fadeeva V. N., Computational Methods of Linear Algebra, Freeman, San Francisco, 1963 | MR
[10] Hughes T. J. R., Levit I., Winget J. M., “An element-by-element solution algorithm for problems of structural and solid mechanics”, Comput. Methods Appl. Mech. Engrg., 36 (1983), 241–254 | DOI | Zbl
[11] Hughes T. J. R., Winget J. M., “Solution algorithms for nonlinear transient heat conduction analysis employing element-by-element iterative strategies”, Comput. Methods Appl. Mech. Engrg., 52 (1985), 711–815 | DOI | MR | Zbl
[12] Notay Y., “Flexible conjugate gradient”, SIAM J. Sci. Comp., 22 (2000), 1444–1460 | DOI | MR | Zbl
[13] Rietbergen van B., Mechanical behavior and adaptation of trabecular bone in relation to bone morphology, PhD thesis, University of Nijmegen, The Netherlands, 1996
[14] Rietbergen van B., Weinans H., Huiskes R., Polman B. J. W., “Computational strategies for iterative solution of large FEM applications employing voxel data”, Int. J. Numer. Meth. Engrg., 39 (1996), 2743–2767 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[15] Yserentant H., “On the multilevel splitting of finite element spaces”, Numer. Math., 49 (1986), 379–412 | DOI | MR | Zbl
[16] Vassilevski P., “Hybrid V-cycle algebraic multilevel preconditioners”, Math. Comput., 58 (1992), 489–512 | DOI | MR | Zbl
[17] Wathen A. J., “An analysis of some element-by-element techniques”, Comput. Methods Appl. Mech. Engrg., 74 (1989), 271–287 | DOI | MR | Zbl