Stochastic solution to partial differential equations of fractional orders
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 197-203
Voir la notice de l'article provenant de la source Math-Net.Ru
Partial differential equations containing the fractional derivatives $\partial^{\beta}f/\partial t^{\beta}(0\beta\leq 1)$ and $(-\Delta_m)^{\alpha/2}(0\alpha2)$. are considered. These equations generalize the ordinary diffusion equation to an anomalous one and can be solved by $m$-dimensional isotropic random walk with delay. In contrast to the ordinary case, a free path distribution should have a heavy tail of the inverse power type with the exponent $\alpha$, and the delay time distribution should have a similar tail with the exponent $\beta$.
@article{SJVM_2003_6_2_a8,
author = {V. V. Uchaikin and V. V. Saenko},
title = {Stochastic solution to partial differential equations of fractional orders},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {197--203},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a8/}
}
TY - JOUR AU - V. V. Uchaikin AU - V. V. Saenko TI - Stochastic solution to partial differential equations of fractional orders JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2003 SP - 197 EP - 203 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a8/ LA - en ID - SJVM_2003_6_2_a8 ER -
V. V. Uchaikin; V. V. Saenko. Stochastic solution to partial differential equations of fractional orders. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 197-203. http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a8/