Stochastic solution to partial differential equations of fractional orders
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 197-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

Partial differential equations containing the fractional derivatives $\partial^{\beta}f/\partial t^{\beta}(0\beta\leq 1)$ and $(-\Delta_m)^{\alpha/2}(0\alpha2)$. are considered. These equations generalize the ordinary diffusion equation to an anomalous one and can be solved by $m$-dimensional isotropic random walk with delay. In contrast to the ordinary case, a free path distribution should have a heavy tail of the inverse power type with the exponent $\alpha$, and the delay time distribution should have a similar tail with the exponent $\beta$.
@article{SJVM_2003_6_2_a8,
     author = {V. V. Uchaikin and V. V. Saenko},
     title = {Stochastic solution to partial differential equations of fractional orders},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {197--203},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a8/}
}
TY  - JOUR
AU  - V. V. Uchaikin
AU  - V. V. Saenko
TI  - Stochastic solution to partial differential equations of fractional orders
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 197
EP  - 203
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a8/
LA  - en
ID  - SJVM_2003_6_2_a8
ER  - 
%0 Journal Article
%A V. V. Uchaikin
%A V. V. Saenko
%T Stochastic solution to partial differential equations of fractional orders
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 197-203
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a8/
%G en
%F SJVM_2003_6_2_a8
V. V. Uchaikin; V. V. Saenko. Stochastic solution to partial differential equations of fractional orders. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 197-203. http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a8/

[1] Ermakov S. M., Nekrutkin V. V., Sipin A. S., Random Processes for Classical Equations of Mathematical Physics, Nauka, Moscow, 1984 | MR

[2] Sabelfeld K. K., Monte Carlo Methods in Boundary Value Problems, Novosibirsk, 1989 (in Russian) | MR

[3] Mikhailov G. A., Optimization of Weight Monte Carlo Methods, Heidelbers, Berlin, 1992 | MR

[4] Talay D., “Probabilistic numerical methods for partial differential equations: elements of analysis”, Lecture Notes in Math., 1627, 1996, 148–171 | MR

[5] Uchaikin V. V., Zolotarev V. M., Chance and Stability. Stable Distributions and their Applications., VSP, The Netherlands, Utrecht, 1999 | MR | Zbl

[6] Montroll E. W., Weiss G. H., “Random walks on lattices”, J. Math. Phys., 6 (1965), 167–181 | DOI | MR

[7] Bouchaud J.-P., Georges A., “Anomalous diffusion in disordered media: Statistical mechanics, models and physical application”, Phys. Rep., 195 (1990), 127–293 | MR

[8] Isichenko M. B., “Percolation, statistical topography, and transport in random media”, Rev. Mod. Phys., 64 (1992), 961–1043 | DOI | MR

[9] West B. J., Deering W., “Fractal physiology for physicists: Levy statistics”, Phys. Rep., 246 (1994), 1–100 | DOI

[10] Oldham K. B., Spanier J., The Fractional Calculus, Academic Press, New York, 1974 | MR | Zbl

[11] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives – Theory and Applications, Gordon and Breach, New York, 1993 | MR | Zbl

[12] Miller K. S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993 | MR