Stochastic solution to partial differential equations of fractional orders
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 197-203

Voir la notice de l'article provenant de la source Math-Net.Ru

Partial differential equations containing the fractional derivatives $\partial^{\beta}f/\partial t^{\beta}(0\beta\leq 1)$ and $(-\Delta_m)^{\alpha/2}(0\alpha2)$. are considered. These equations generalize the ordinary diffusion equation to an anomalous one and can be solved by $m$-dimensional isotropic random walk with delay. In contrast to the ordinary case, a free path distribution should have a heavy tail of the inverse power type with the exponent $\alpha$, and the delay time distribution should have a similar tail with the exponent $\beta$.
@article{SJVM_2003_6_2_a8,
     author = {V. V. Uchaikin and V. V. Saenko},
     title = {Stochastic solution to partial differential equations of fractional orders},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {197--203},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a8/}
}
TY  - JOUR
AU  - V. V. Uchaikin
AU  - V. V. Saenko
TI  - Stochastic solution to partial differential equations of fractional orders
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 197
EP  - 203
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a8/
LA  - en
ID  - SJVM_2003_6_2_a8
ER  - 
%0 Journal Article
%A V. V. Uchaikin
%A V. V. Saenko
%T Stochastic solution to partial differential equations of fractional orders
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 197-203
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a8/
%G en
%F SJVM_2003_6_2_a8
V. V. Uchaikin; V. V. Saenko. Stochastic solution to partial differential equations of fractional orders. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 197-203. http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a8/