On the condition number of matrices occurring in problems of generation of functions of many variables
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 159-169
Voir la notice de l'article provenant de la source Math-Net.Ru
The solvability of the problem of the differentially conditioned generation of a function of many variables
in $R_m$ is examined. With dimension $m\geq 2$, one can say about the probabilistic solution only. It is shown that the probability to have an unambiguous solution is close to unit in the case of the analytical basis functions.
@article{SJVM_2003_6_2_a5,
author = {V. A. Leus},
title = {On the condition number of matrices occurring in problems of generation of functions of many variables},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {159--169},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a5/}
}
TY - JOUR AU - V. A. Leus TI - On the condition number of matrices occurring in problems of generation of functions of many variables JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2003 SP - 159 EP - 169 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a5/ LA - ru ID - SJVM_2003_6_2_a5 ER -
%0 Journal Article %A V. A. Leus %T On the condition number of matrices occurring in problems of generation of functions of many variables %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2003 %P 159-169 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a5/ %G ru %F SJVM_2003_6_2_a5
V. A. Leus. On the condition number of matrices occurring in problems of generation of functions of many variables. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 159-169. http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a5/