On the condition number of matrices occurring in problems of generation of functions of many variables
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 159-169

Voir la notice de l'article provenant de la source Math-Net.Ru

The solvability of the problem of the differentially conditioned generation of a function of many variables in $R_m$ is examined. With dimension $m\geq 2$, one can say about the probabilistic solution only. It is shown that the probability to have an unambiguous solution is close to unit in the case of the analytical basis functions.
@article{SJVM_2003_6_2_a5,
     author = {V. A. Leus},
     title = {On the condition number of matrices occurring in problems of generation of functions of many variables},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {159--169},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a5/}
}
TY  - JOUR
AU  - V. A. Leus
TI  - On the condition number of matrices occurring in problems of generation of functions of many variables
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 159
EP  - 169
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a5/
LA  - ru
ID  - SJVM_2003_6_2_a5
ER  - 
%0 Journal Article
%A V. A. Leus
%T On the condition number of matrices occurring in problems of generation of functions of many variables
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 159-169
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a5/
%G ru
%F SJVM_2003_6_2_a5
V. A. Leus. On the condition number of matrices occurring in problems of generation of functions of many variables. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 159-169. http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a5/