The problem of moments on a~finite set of points
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 149-157

Voir la notice de l'article provenant de la source Math-Net.Ru

The influence of the last diagonal entry $b_n$ of the Jacobi matrix on its eigenvalues, which at the same time are the nodes of orthogonality of respective polynomials as well as on the squares of the first components of the normalized eigenvectors – the weights of the orthogonality, is considered. The weights of orthogonality are the distribution masses whose moments are known and given by the positive definite Hankel matrix independent of $b_n$. Using the solutions to the equations with special matrices the first derivatives of $b_n$ of the nodes and the weights of orthogonality of the polynomials are calculated. Their asymptotic behavior with $b_n\to\pm\infty$ is discussed.
@article{SJVM_2003_6_2_a4,
     author = {Yu. I. Kuznetsov},
     title = {The problem of moments on a~finite set of points},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {149--157},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a4/}
}
TY  - JOUR
AU  - Yu. I. Kuznetsov
TI  - The problem of moments on a~finite set of points
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 149
EP  - 157
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a4/
LA  - ru
ID  - SJVM_2003_6_2_a4
ER  - 
%0 Journal Article
%A Yu. I. Kuznetsov
%T The problem of moments on a~finite set of points
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 149-157
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a4/
%G ru
%F SJVM_2003_6_2_a4
Yu. I. Kuznetsov. The problem of moments on a~finite set of points. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 149-157. http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a4/