A~compact projecting-grid scheme for a~class of twodimensional diffusive equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 125-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite-element compact scheme of fourth order accuracy for the class of elliptic problems is proposed. Namely, the case of coefficients with splitting arguments is considered. The space of grid functions is designed, in which the coercive bilinear form is defined. The mesh energy norm of the error is estimated.
@article{SJVM_2003_6_2_a2,
     author = {A. A. Bubyakin and Yu. M. Laevsky},
     title = {A~compact projecting-grid scheme for a~class of twodimensional diffusive equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {125--138},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a2/}
}
TY  - JOUR
AU  - A. A. Bubyakin
AU  - Yu. M. Laevsky
TI  - A~compact projecting-grid scheme for a~class of twodimensional diffusive equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 125
EP  - 138
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a2/
LA  - ru
ID  - SJVM_2003_6_2_a2
ER  - 
%0 Journal Article
%A A. A. Bubyakin
%A Yu. M. Laevsky
%T A~compact projecting-grid scheme for a~class of twodimensional diffusive equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 125-138
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a2/
%G ru
%F SJVM_2003_6_2_a2
A. A. Bubyakin; Yu. M. Laevsky. A~compact projecting-grid scheme for a~class of twodimensional diffusive equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 125-138. http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a2/

[1] Lebedev V. I., Tsapelkin E. S., “O vliyanii vybora koordinatnykh funktsii na strukturu uravnenii metoda Galerkina”, Variatsionno-raznostnye metody v matematicheskoi fizike, Sb. nauchn. trudov, AN SSSR. Sib. otd-nie VTs, Novosibirsk, 1974, 47–58 | MR

[2] Il'in V. P., Laevsky Yu. M., “On the compact schemes of high order accuracy in finite element method”, Rus. J. of Numer. Anal. and Math. Modell., 17:1 (2002), 25–39 | MR

[3] Bubyakin A. A., Laevskii Yu. M., “Ob odnoi variatsionno-raznostnoi skheme povyshennogo poryadka tochnosti resheniya trekhmernogo uravneniya Puassona”, Vestnik NGU, 2:2 (2002), 19–31 | Zbl

[4] Samarskii A. A., “Skhemy povyshennogo poryadka tochnosti dlya mnogomernogo uravneniya teploprovodnosti”, Zhurn. vychisl. matem. i mat. fiziki, 3:5 (1963), 812–840 | MR | Zbl

[5] Ilin V. P., Metody konechnykh raznostei i konechnykh ob'emov dlya ellipticheskikh uravnenii, Izd-vo Instituta matematiki SO RAN, Novosibirsk, 2000

[6] Agoshkov V. I., O variatsionnoi forme integralnogo tozhdestva G. I. Marchuka, Preprint / RAN. Sib. otd-nie. VTs; 39, Novosibirsk, 1977 | MR

[7] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1982