Finite element method for calculation of dynamic stresses in the continuous beam on elastic supports
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 113-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a damping beam construction on elastic supports. For this kind of a construction a general mathematical model is deduced. The external load is a time-depending harmonic function. The corresponding spectral problem contains the eigenvalue parameter in the boundary conditions. The variational formulations of the considered boundary value problems are obtained. The dynamic stresses of the constructions are determined using the finite element method and the method of normal shapes. Finally, the numerical results related to the problem with practical applications are presented.
@article{SJVM_2003_6_2_a1,
     author = {A. B. Andreev and J. T. Maximov and M. R. Racheva},
     title = {Finite element method for calculation of dynamic stresses in the continuous beam on elastic supports},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {113--124},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a1/}
}
TY  - JOUR
AU  - A. B. Andreev
AU  - J. T. Maximov
AU  - M. R. Racheva
TI  - Finite element method for calculation of dynamic stresses in the continuous beam on elastic supports
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 113
EP  - 124
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a1/
LA  - en
ID  - SJVM_2003_6_2_a1
ER  - 
%0 Journal Article
%A A. B. Andreev
%A J. T. Maximov
%A M. R. Racheva
%T Finite element method for calculation of dynamic stresses in the continuous beam on elastic supports
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 113-124
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a1/
%G en
%F SJVM_2003_6_2_a1
A. B. Andreev; J. T. Maximov; M. R. Racheva. Finite element method for calculation of dynamic stresses in the continuous beam on elastic supports. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 113-124. http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a1/

[1] Andreev A. V., Maximov J. T., Racheva M. R., “Finite element method for plates with dynamic loads”, LNCS, 2179, Springer-Verlag, 2001, 445–453 | Zbl

[2] Bathe K.-J., Finite Element Procedures in Engineering Analysis, Prentice Hall, Inc., Englewood Cliffs, N.J., 1982

[3] Cenderz Z. J., “Vector finite elements for electromagnetic field problems”, IEEE Transactions on Magnetics, 27:5 (1991), 3958–3966 | DOI

[4] Ciarlet P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978 | MR | Zbl

[5] Maximov J. T., “Forming of cross-profile holes by adding rotations round coplanar axes”, International Journal of Machine Tools and Manufacture, 42:3 (2002), 313–320 | DOI

[6] Mei C., Decha-Umphai K., “A finite element method for nonlinear forced vibrations of beams”, Journal of Sound and Vibration, 102:3 (1985), 369–380 | DOI

[7] Mercier B., “Numerical solution of the biharmonic problem by mixed finite elements of class $C^0$”, Bull. Un. Math. Ital., 10 (1974), 133–149 | MR | Zbl

[8] Timoshenko S. P., Young D. H., Weaver W., Vibration Problems in Engineering, John Wiley Sons, New York, 1977