Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2003_6_2_a1, author = {A. B. Andreev and J. T. Maximov and M. R. Racheva}, title = {Finite element method for calculation of dynamic stresses in the continuous beam on elastic supports}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {113--124}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a1/} }
TY - JOUR AU - A. B. Andreev AU - J. T. Maximov AU - M. R. Racheva TI - Finite element method for calculation of dynamic stresses in the continuous beam on elastic supports JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2003 SP - 113 EP - 124 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a1/ LA - en ID - SJVM_2003_6_2_a1 ER -
%0 Journal Article %A A. B. Andreev %A J. T. Maximov %A M. R. Racheva %T Finite element method for calculation of dynamic stresses in the continuous beam on elastic supports %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2003 %P 113-124 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a1/ %G en %F SJVM_2003_6_2_a1
A. B. Andreev; J. T. Maximov; M. R. Racheva. Finite element method for calculation of dynamic stresses in the continuous beam on elastic supports. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 113-124. http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a1/
[1] Andreev A. V., Maximov J. T., Racheva M. R., “Finite element method for plates with dynamic loads”, LNCS, 2179, Springer-Verlag, 2001, 445–453 | Zbl
[2] Bathe K.-J., Finite Element Procedures in Engineering Analysis, Prentice Hall, Inc., Englewood Cliffs, N.J., 1982
[3] Cenderz Z. J., “Vector finite elements for electromagnetic field problems”, IEEE Transactions on Magnetics, 27:5 (1991), 3958–3966 | DOI
[4] Ciarlet P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978 | MR | Zbl
[5] Maximov J. T., “Forming of cross-profile holes by adding rotations round coplanar axes”, International Journal of Machine Tools and Manufacture, 42:3 (2002), 313–320 | DOI
[6] Mei C., Decha-Umphai K., “A finite element method for nonlinear forced vibrations of beams”, Journal of Sound and Vibration, 102:3 (1985), 369–380 | DOI
[7] Mercier B., “Numerical solution of the biharmonic problem by mixed finite elements of class $C^0$”, Bull. Un. Math. Ital., 10 (1974), 133–149 | MR | Zbl
[8] Timoshenko S. P., Young D. H., Weaver W., Vibration Problems in Engineering, John Wiley Sons, New York, 1977