Enumeration, coding, and generation of sequences with constraints on lengths of minimum series
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 101-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

The sets of binary and $n$-valued serial sequences of the length $m$ with the given values of lengths of minimum series are considered. Exact formulas for the determination of the powers of such sets are obtained. The algorithms of coding and generation for the binary sequences are found.
@article{SJVM_2003_6_2_a0,
     author = {V. A. Amelkin},
     title = {Enumeration, coding, and generation of sequences with constraints on lengths of minimum series},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {101--111},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a0/}
}
TY  - JOUR
AU  - V. A. Amelkin
TI  - Enumeration, coding, and generation of sequences with constraints on lengths of minimum series
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 101
EP  - 111
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a0/
LA  - ru
ID  - SJVM_2003_6_2_a0
ER  - 
%0 Journal Article
%A V. A. Amelkin
%T Enumeration, coding, and generation of sequences with constraints on lengths of minimum series
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 101-111
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a0/
%G ru
%F SJVM_2003_6_2_a0
V. A. Amelkin. Enumeration, coding, and generation of sequences with constraints on lengths of minimum series. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 2, pp. 101-111. http://geodesic.mathdoc.fr/item/SJVM_2003_6_2_a0/

[1] Amelkin V. A., “Algoritmy tochnogo resheniya zadach perechisleniya, kodirovaniya i generirovaniya seriinykh posledovatelnostei”, Sib. zhurn. vychisl. matematiki / RAN Sib. otd.-nie. — Novosibirsk, 4:1 (2001), 1–12 | MR

[2] Goncharov V. L., “Iz oblasti kombinatoriki”, Izv. AN SSSR. Ser. matem., 8:1 (1944), 3–48

[3] Korshunov A. D., “Ob asimptotike chisla binarnykh slov s zadannoi dlinoi maksimalnoi serii 1”, Diskretnyi analiz i issledovanie operatsii. Ser. 1, 4, Izd. IM SO RAN, Novosibirsk, 1997, 13–46 | MR

[4] Savelev L. Ya., “Maksimum dlin serii v obobschennykh posledovatelnostyakh Bernulli”, Diskretnaya matematika, 11:1 (1999), 29–52 | MR

[5] Amelkin V. A., “Algoritmy perechisleniya i numeratsionnogo kodirovaniya posledovatelnostei s zadannymi dlinami maksimalnykh serii”, Sib. zhurn. vychisl. matematiki / RAN Sib. otd.-nie. — Novosibirsk, 5:3 (2002), 215–223

[6] Cover T. M., “Enumerative source encoding”, IEEE Trans. Inform. Theory, 19:1 (1973), 73–77 | DOI | MR | Zbl

[7] Amelkin V. A., Metody numeratsionnogo kodirovaniya, Nauka, Novosibirsk, 1986 | MR