On a~model of radiation transport problems in the spherical shell with allowance for the reflecting boundary
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 1, pp. 73-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

The radiation transport in the Earth's atmosphere is being investigated to scale over the whole planet. The method of the numerical solution of the general boundary value problem in the radiative transfer theory for a spherical shell with a reflecting underlying surface for the mathematical modeling of the Earth radiation field is proposed. The optical transfer operator of the spherical atmosphere-Earth system has been constructed. The models of the influence functions for the transfer theory spherical boundary value problem are formulated.
@article{SJVM_2003_6_1_a5,
     author = {T. A. Sushkevich and E. V. Vladimirova},
     title = {On a~model of radiation transport problems in the spherical shell with allowance for the reflecting boundary},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {73--88},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a5/}
}
TY  - JOUR
AU  - T. A. Sushkevich
AU  - E. V. Vladimirova
TI  - On a~model of radiation transport problems in the spherical shell with allowance for the reflecting boundary
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 73
EP  - 88
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a5/
LA  - ru
ID  - SJVM_2003_6_1_a5
ER  - 
%0 Journal Article
%A T. A. Sushkevich
%A E. V. Vladimirova
%T On a~model of radiation transport problems in the spherical shell with allowance for the reflecting boundary
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 73-88
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a5/
%G ru
%F SJVM_2003_6_1_a5
T. A. Sushkevich; E. V. Vladimirova. On a~model of radiation transport problems in the spherical shell with allowance for the reflecting boundary. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 1, pp. 73-88. http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a5/

[1] Marchuk G. I., Mikhailov G. A., “O reshenii zadach atmosfernoi optiki metodom Monte-Karlo”, Izv. AN SSSR. Fizika atmosfery i okeana, 3:3 (1967), 258–273

[2] Marchuk G. I., Mikhailov G. A., “Rezultaty resheniya nekotorykh zadach atmosfernoi optiki metodom Monte-Karlo”, Izv. AN SSSR. Fizika atmosfery i okeana, 3:4 (1967), 394–401

[3] Marchuk G. I., Mikhailov G. A., Nazaraliev M. A., Darbinyan R. A., Reshenie pryamykh i nekotorykh obratnykh zadach atmosfernoi optiki metodom Monte-Karlo, Nauka, Novosibirsk, 1968

[4] Marchuk G. I., “O postanovke nekotorykh obratnykh zadach”, Dokl. AN SSSR, 156:3 (1964), 503–506 | Zbl

[5] Marchuk G. I., “Uravnenie dlya tsennosti informatsii s meteorologicheskikh sputnikov i postanovka obratnykh zadach”, Kosmich. issled., 2:3 (1964), 462–477

[6] Mikhailov G. A., “Ob odnom printsipe optimizatsii raschetov po metodu Monte-Karlo”, Zhurn. vychisl. matem. i mat. fiziki, 8:5 (1968), 1085–1093

[7] Mikhailov G. A., “Ispolzovanie priblizhennykh reshenii sopryazhennoi zadachi dlya uluchsheniya algoritmov metoda Monte-Karlo”, Zhurn. vychisl. matem. i mat. fiziki, 9:5 (1969), 1145–1152 | Zbl

[8] Mikhailov G. A., Nazaraliev M. A., “Optimizatsiya otsenki funktsionalnykh zavisimostei metodom Monte-Karlo”, Zhurn. vychisl. matem. i mat. fiziki, 10:3 (1970), 734–740

[9] Mikhailov G. A., “Nekotorye zamechaniya ob ispolzovanii sopryazhennykh reshenii dlya uluchsheniya algoritmov metoda Monte-Karlo”, Issledovanie operatsii i metod Monte-Karlo, LGU, L., 1971

[10] Marchuk G. I., Mikhailov G. A., Nazaraliev M. A., Darbinyan R. A., Kargin B. A., Elepov B. S., Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976 | MR | Zbl

[11] Smoktii O. I., Modelirovanie polei izlucheniya v zadachakh kosmicheskoi spektrofotometrii, Nauka, L., 1986

[12] Sushkevich T. A., Osesimmetrichnaya zadacha o rasprostranenii izlucheniya v sfericheskoi sisteme, Otchet No 0-572-66, IPM AN SSSR, M., 1966, 180 pp.

[13] Sushkevich T. A., “O modelirovanii perenosa solnechnogo izlucheniya v sfericheskoi atmosfere Zemli i oblakakh”, Optika atmosfery i okeana, 12:3 (1999), 251–257

[14] Sushkevich T. A., “O reshenii zadach atmosfernoi korrektsii sputnikovoi informatsii”, Issled. Zemli iz kosmosa, 1999, no. 6, 49–66

[15] Sushkevich T. A., “O sfericheskoi modeli izlucheniya Zemli”, Vychisl. matem. i mat. modelirovanie, Trudy mezhdunarodnoi konferentsii, posvyaschennoi 75-letiyu akademika G. I. Marchuka i 20-letiyu Instituta vychislitelnoi matematiki RAN. T. 1 (Moskva, 19–22 iyunya 2000 g.), ed. V. P. Dymnikova, IVM RAN, M., 2000, 168–191

[16] Sushkevich T. A., “Lineino-sistemnyi podkhod i teoriya opticheskogo peredatochnogo operatora”, Optika atmosfery i okeana, 13:8 (2000), 744–753

[17] Sushkevich T. A., Vladimirova E. V., Ob opticheskom peredatochnom operatore sfericheskoi sistemy atmosfera-Zemlya, Preprint / IPM RAN; 47, M., 2000, 30 pp.

[18] Sushkevich T. A., Vladimirova E. V., Sfericheskaya model perenosa izlucheniya v atmosfere Zemli. II. Krivolineinaya sistema koordinat. Kharakteristiki uravneniya perenosa, Preprint / IPM RAN; 73, M., 1997, 28 pp. | Zbl

[19] Germogenova T. A., “Ob obratnykh zadachakh atmosfernoi optiki”, Dokl. AN SSSR, 295:5 (1985), 1091–1095 | MR

[20] Vladimirov B. C., Marchuk G. I., “Ob opredelenii sopryazhennogo operatora dlya nelineinykh zadach”, Dokl. RAN, 372:2 (2000), 165–168 | MR | Zbl

[21] Keiz K., Tsvaifel P., Lineinaya teoriya perenosa, Mir, M., 1972

[22] Monin A. S., “Statisticheskaya interpretatsiya rasseyaniya mikrochastits”, Teoriya veroyatnostei i ee primenenie, 1:3 (1956), 328–343 | MR

[23] Kadomtsev B. B., “O funktsii vliyaniya v teorii perenosa luchistoi energii”, Dokl. AN SSSR, 113:3 (1957), 541–543 | Zbl