Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2003_6_1_a1, author = {A. S. Bulgak}, title = {An algorithm for testing the practical regularity of interval matrices}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {17--23}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a1/} }
A. S. Bulgak. An algorithm for testing the practical regularity of interval matrices. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 1, pp. 17-23. http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a1/
[1] Moore R. E., Interval Analysis, Prentice Hall, Englewood Cliffs, New Jersey, 1966 | MR | Zbl
[2] Neumaier A., Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[3] Rump S. M., “Verification methods for dense and sparse systems of equations”, Topics in Validated Computations-Studies in Computational Mathematics, ed. J. Herzberger, Amsterdam, 1994, 63–136 | MR
[4] Jansson C., Rohn J., “An algorithm for checking regularity of interval matrices”, SIAM J. Matrix Anal. and Appl., 20:3 (1999), 756–776 | DOI | MR | Zbl
[5] Kreinovich V., Lakeev A., Rohn J., and Kahl P., Computational Complexity and Feasibility of Data Processing and Interval Computations, Kluwer, Dordreht, 1997 | MR | Zbl
[6] Bulgak A., “Checking of a well-conditioning of an interval matrix”, Sib. J. Diff. Equations, 3:4 (1998), 75–79
[7] Godunov S. K., Sovremennye aspekty lineinoi algebry, Nauchnaya kniga, Novosibirsk, 1997
[8] Householder A. S., Principles of Numerical Analysis, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953 | MR | Zbl
[9] Bulgak A., “Checking a practical asymptotic stability of an interval matrix”, Selcuk J. Appl. Math., 2:1 (2001), 17–26 | Zbl
[10] Ortega J., Rheinboldt W., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970 | MR | Zbl
[11] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986 | MR