An algorithm for testing the practical regularity of interval matrices
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 1, pp. 17-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of testing the practical regularity of the interval matrices is considered. In the present paper, the author proposes an algorithm for testing the practical regularity of the interval matrices.
@article{SJVM_2003_6_1_a1,
     author = {A. S. Bulgak},
     title = {An algorithm for testing the practical regularity of interval matrices},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {17--23},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a1/}
}
TY  - JOUR
AU  - A. S. Bulgak
TI  - An algorithm for testing the practical regularity of interval matrices
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 17
EP  - 23
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a1/
LA  - ru
ID  - SJVM_2003_6_1_a1
ER  - 
%0 Journal Article
%A A. S. Bulgak
%T An algorithm for testing the practical regularity of interval matrices
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 17-23
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a1/
%G ru
%F SJVM_2003_6_1_a1
A. S. Bulgak. An algorithm for testing the practical regularity of interval matrices. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 1, pp. 17-23. http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a1/

[1] Moore R. E., Interval Analysis, Prentice Hall, Englewood Cliffs, New Jersey, 1966 | MR | Zbl

[2] Neumaier A., Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[3] Rump S. M., “Verification methods for dense and sparse systems of equations”, Topics in Validated Computations-Studies in Computational Mathematics, ed. J. Herzberger, Amsterdam, 1994, 63–136 | MR

[4] Jansson C., Rohn J., “An algorithm for checking regularity of interval matrices”, SIAM J. Matrix Anal. and Appl., 20:3 (1999), 756–776 | DOI | MR | Zbl

[5] Kreinovich V., Lakeev A., Rohn J., and Kahl P., Computational Complexity and Feasibility of Data Processing and Interval Computations, Kluwer, Dordreht, 1997 | MR | Zbl

[6] Bulgak A., “Checking of a well-conditioning of an interval matrix”, Sib. J. Diff. Equations, 3:4 (1998), 75–79

[7] Godunov S. K., Sovremennye aspekty lineinoi algebry, Nauchnaya kniga, Novosibirsk, 1997

[8] Householder A. S., Principles of Numerical Analysis, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953 | MR | Zbl

[9] Bulgak A., “Checking a practical asymptotic stability of an interval matrix”, Selcuk J. Appl. Math., 2:1 (2001), 17–26 | Zbl

[10] Ortega J., Rheinboldt W., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970 | MR | Zbl

[11] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986 | MR