The stability in~$\ell$ of some difference schemes for heat conductivity equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 1, pp. 1-16

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, the stability in $\ell_p$ space for a wide class of difference schemes corresponding to the heat conductivity equation with variable coefficients is proved. This paper is the sequel of the author's previous works. The attraction of this methodology consists in that a prior estimations in $\ell_p$ for difference problems are obtained in the same way as in the case of initial differential problems in $L_p$ space.
@article{SJVM_2003_6_1_a0,
     author = {A. Sh. Akysh (Akishev)},
     title = {The stability in~$\ell$ of some difference schemes for heat conductivity equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a0/}
}
TY  - JOUR
AU  - A. Sh. Akysh (Akishev)
TI  - The stability in~$\ell$ of some difference schemes for heat conductivity equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2003
SP  - 1
EP  - 16
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a0/
LA  - ru
ID  - SJVM_2003_6_1_a0
ER  - 
%0 Journal Article
%A A. Sh. Akysh (Akishev)
%T The stability in~$\ell$ of some difference schemes for heat conductivity equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2003
%P 1-16
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a0/
%G ru
%F SJVM_2003_6_1_a0
A. Sh. Akysh (Akishev). The stability in~$\ell$ of some difference schemes for heat conductivity equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 6 (2003) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/SJVM_2003_6_1_a0/