Variational aspects of one-dimensional fourth-order problems with eigenvalue parameter in the boundary conditions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 4, pp. 373-380.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a general type of eigenvalue problems for one-dimensional fourth-order operators. The case where the spectral parameter linearly appears in the boundary conditions is discussed. It is well-known that the Galerkin methods depend on the variational formulations of the given boundary problem. The conditions, when the variational bilinear forms are symmetric and the eigenfunctions belong to an appropriate Hilbert space, are presented. Our investigation has a direct application to the eigenoscillations of the mechanical systems. The effect of the theoretical results are illustrated by some examples.
@article{SJVM_2002_5_4_a5,
     author = {Milena R. Racheva and Andrey B. Andreev},
     title = {Variational aspects of one-dimensional fourth-order problems with eigenvalue parameter in the boundary conditions},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {373--380},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a5/}
}
TY  - JOUR
AU  - Milena R. Racheva
AU  - Andrey B. Andreev
TI  - Variational aspects of one-dimensional fourth-order problems with eigenvalue parameter in the boundary conditions
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2002
SP  - 373
EP  - 380
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a5/
LA  - en
ID  - SJVM_2002_5_4_a5
ER  - 
%0 Journal Article
%A Milena R. Racheva
%A Andrey B. Andreev
%T Variational aspects of one-dimensional fourth-order problems with eigenvalue parameter in the boundary conditions
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2002
%P 373-380
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a5/
%G en
%F SJVM_2002_5_4_a5
Milena R. Racheva; Andrey B. Andreev. Variational aspects of one-dimensional fourth-order problems with eigenvalue parameter in the boundary conditions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 4, pp. 373-380. http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a5/

[1] Belinskiy B. P., Daner J. P., “Eigenoscillations of mechanical systems with boundary conditions containing the frequency”, Quarterly of Applied Math., 56:3 (1998), 521–541, Sept. | MR | Zbl

[2] Ahn H. J., “Vibrations of a pendulum consisting of a bob suspended from a wire: the method of integral equations”, Quarterly of Applied Math., 39 (1981), 109–117, April. | MR | Zbl

[3] Liu W., Huang C., “Vibrations of a constrained beam carrying a heavy tip body”, Journal of Sound and Vibration, 123 (1989), 15–19 | DOI

[4] Bambill E. A., Laura P. A., “Application of the Raileigh-Schmidt method when the boundary conditions contain the eigenvalues of the problem”, Journal of Sound and Vibration, 130 (1989), 167–170 | DOI

[5] Abramovich H., Hamburger O., “Vibration of a uniform cantilever Timoshenko beam with translational and rotational springs and with a tip mass”, Journal of Sound and Vibration, 154:1 (1992), 67–80 | DOI | Zbl

[6] Racheva M. R., “Bounds for the principal eigenvalue of a nonhomogeneous bar with a tip mass”, Comp. Rend. Acad. Bulg. Sei., 54:11 (2001), 23–26 | MR | Zbl

[7] Ciariet P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978 | MR

[8] Mikhlin S. G., Variational Methods in Mathematical Physics, Pergamon, Oxford, 1964 | MR

[9] Collatz L., Eigenwertaufgaben mit Technischen Anwendungen, Academische Verlagsgesellschaft, Leipzig, 1963 | MR

[10] Babuška I., Osborn J., “Eigenvalue Problems”, Handbook of numerical analysis. V. II: Finite element methods (Part 1), North-Holland, Amsterdam, 1991, 641–787 | MR | Zbl