Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2002_5_4_a5, author = {Milena R. Racheva and Andrey B. Andreev}, title = {Variational aspects of one-dimensional fourth-order problems with eigenvalue parameter in the boundary conditions}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {373--380}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a5/} }
TY - JOUR AU - Milena R. Racheva AU - Andrey B. Andreev TI - Variational aspects of one-dimensional fourth-order problems with eigenvalue parameter in the boundary conditions JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2002 SP - 373 EP - 380 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a5/ LA - en ID - SJVM_2002_5_4_a5 ER -
%0 Journal Article %A Milena R. Racheva %A Andrey B. Andreev %T Variational aspects of one-dimensional fourth-order problems with eigenvalue parameter in the boundary conditions %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2002 %P 373-380 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a5/ %G en %F SJVM_2002_5_4_a5
Milena R. Racheva; Andrey B. Andreev. Variational aspects of one-dimensional fourth-order problems with eigenvalue parameter in the boundary conditions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 4, pp. 373-380. http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a5/
[1] Belinskiy B. P., Daner J. P., “Eigenoscillations of mechanical systems with boundary conditions containing the frequency”, Quarterly of Applied Math., 56:3 (1998), 521–541, Sept. | MR | Zbl
[2] Ahn H. J., “Vibrations of a pendulum consisting of a bob suspended from a wire: the method of integral equations”, Quarterly of Applied Math., 39 (1981), 109–117, April. | MR | Zbl
[3] Liu W., Huang C., “Vibrations of a constrained beam carrying a heavy tip body”, Journal of Sound and Vibration, 123 (1989), 15–19 | DOI
[4] Bambill E. A., Laura P. A., “Application of the Raileigh-Schmidt method when the boundary conditions contain the eigenvalues of the problem”, Journal of Sound and Vibration, 130 (1989), 167–170 | DOI
[5] Abramovich H., Hamburger O., “Vibration of a uniform cantilever Timoshenko beam with translational and rotational springs and with a tip mass”, Journal of Sound and Vibration, 154:1 (1992), 67–80 | DOI | Zbl
[6] Racheva M. R., “Bounds for the principal eigenvalue of a nonhomogeneous bar with a tip mass”, Comp. Rend. Acad. Bulg. Sei., 54:11 (2001), 23–26 | MR | Zbl
[7] Ciariet P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978 | MR
[8] Mikhlin S. G., Variational Methods in Mathematical Physics, Pergamon, Oxford, 1964 | MR
[9] Collatz L., Eigenwertaufgaben mit Technischen Anwendungen, Academische Verlagsgesellschaft, Leipzig, 1963 | MR
[10] Babuška I., Osborn J., “Eigenvalue Problems”, Handbook of numerical analysis. V. II: Finite element methods (Part 1), North-Holland, Amsterdam, 1991, 641–787 | MR | Zbl