The search for the sphere of the best cubature formulae invariant under octahedral group of rotations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 4, pp. 367-372.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new optimality criterion of the cubature formula, invariant under any symmetry group for a sphere is proposed. An essential difference of this criterion from others consists in using the main term of the cubature formula error. The work of the new criterion is demonstrated on an example of the cubature formulae invariant under the octahedral group of rotations. The table which contains the main characteristics of all the best today cubature formulae of the octahedral group of rotations up to the 35th algebraic order of accuracy is given. The weights and the coordinates of the new cubature formulae of the 26th and the 27th orders of accurapy are given to 16 significant digits.
@article{SJVM_2002_5_4_a4,
     author = {A. S. Popov},
     title = {The search for the sphere of the best cubature formulae invariant under octahedral group of rotations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {367--372},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a4/}
}
TY  - JOUR
AU  - A. S. Popov
TI  - The search for the sphere of the best cubature formulae invariant under octahedral group of rotations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2002
SP  - 367
EP  - 372
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a4/
LA  - ru
ID  - SJVM_2002_5_4_a4
ER  - 
%0 Journal Article
%A A. S. Popov
%T The search for the sphere of the best cubature formulae invariant under octahedral group of rotations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2002
%P 367-372
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a4/
%G ru
%F SJVM_2002_5_4_a4
A. S. Popov. The search for the sphere of the best cubature formulae invariant under octahedral group of rotations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 4, pp. 367-372. http://geodesic.mathdoc.fr/item/SJVM_2002_5_4_a4/

[1] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[2] Lebedev V. I., “Znacheniya uzlov i vesov kvadraturnykh formul tipa Gaussa–Markova dlya sfery ot 9-go do 17-go poryadka tochnosti, invariantnykh otnositelno gruppy oktaedra s inversiei”, Zhurn. vychisl. matem. i mat. fiziki, 15:1 (1975), 48–54 | MR | Zbl

[3] Lebedev V. I., “O kvadraturakh na sfere”, Zhurn. vychisl. matem. i mat. fiziki, 16:2 (1976), 293–306 | MR | Zbl

[4] Lebedev V. I., “Kvadraturnye formuly dlya sfery 25–29-go poryadka tochnosti”, Sib. mat. zhurn., 18:1 (1977), 132–142 | MR | Zbl

[5] Lebedev V. I., “Kvadraturnaya formula 35-go poryadka dlya sfery”, Teoriya kubaturnykh formul i vychisl. matematika, Tr. konferentsii po differentsialnym uravneniyam i vychislitelnoi matematike, ed. S. L. Sobolev, Nauka, Novosibirsk, 1980, 110–114

[6] Lebedev V. I., Skorokhodov A. L., “Kvadraturnye formuly dlya sfery 41-, 47- i 53-go poryadkov”, Dokl. RAN, 324:3 (1992), 519–524 | MR | Zbl

[7] Lebedev V. I., “Kvadraturnaya formula dlya sfery 59-go algebraicheskogo poryadka tochnosti”, Dokl. RAN, 338:4 (1994), 454–456 | MR | Zbl

[8] Popov A. S., “Cubature formulae for a sphere invariant under cyclic rotation groups”, Russ. J. Numer. Anal. Math. Modelling, 9:6 (1994), 535–546 | DOI | MR | Zbl

[9] Popov A. S., “Kubaturnye formuly dlya sfery, invariantnye otnositelno gruppy tetraedra”, Zhurn. vychisl. matem. i mat. fiziki, 35:3 (1995), 459–466 | MR | Zbl

[10] Popov A. S., “Kubaturnye formuly vysokikh poryadkov tochnosti dlya sfery, invariantnye otnositelno gruppy tetraedra”, Zhurn. vychisl. matem. i mat. fiziki, 36:4 (1996), 5–9 | MR | Zbl

[11] Popov A. S., “Kubaturnye formuly na sfere, invariantnye otnositelno gruppy vraschenii oktaedra”, Zhurn. vychisl. matem. i mat. fiziki, 38:1 (1998), 34–41 | MR | Zbl

[12] Popov A. S., “Novye kubaturnye formuly dlya sfery, invariantnye otnositelno gruppy vraschenii oktaedra”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 4:3 (2001), 281–284

[13] Bakhvalov N. S., Chislennye metody, Nauka, M., 1975

[14] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986 | MR

[15] Ditkin V. A., “O nekotorykh priblizhennykh formulakh dlya vychisleniya trekhkratnykh integralov”, Dokl. AN SSSR, 62:4 (1948), 445–447 | MR | Zbl

[16] Nikolskii S. M., Kvadraturnye formuly, Nauka, M., 1988 | MR

[17] Sobolev S. L., Vaskevich V. L., Kubaturnye formuly, Izd-vo Instituta matematiki SO RAN, Novosibirsk, 1996 | Zbl

[18] Albrecht J., Collatz L., “Zur numerischen Auswertung mehrdimensionaler Integrale”, Z. Angew. Math. und Mech., 38:1–2 (1958), 1–15 | DOI | MR | Zbl

[19] McLaren A. D., “Optimal numerical integration on a sphere”, Math. Comput., 17:83 (1963), 361–383 | MR | Zbl