Construction of weight lattice optimal quadrature formulas in the space $L_2^m(0,N)$
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 3, pp. 275-293
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, the optimal coefficients of weight quadrature formulas are explicitly found in the space
$L_2^m(0,N)$ for any $m\geq 1$ using the algorithm proposed by S. L. Sobolev.
@article{SJVM_2002_5_3_a6,
author = {Kh. M. Shadimetov},
title = {Construction of weight lattice optimal quadrature formulas in the space $L_2^m(0,N)$},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {275--293},
publisher = {mathdoc},
volume = {5},
number = {3},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2002_5_3_a6/}
}
TY - JOUR AU - Kh. M. Shadimetov TI - Construction of weight lattice optimal quadrature formulas in the space $L_2^m(0,N)$ JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2002 SP - 275 EP - 293 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2002_5_3_a6/ LA - ru ID - SJVM_2002_5_3_a6 ER -
Kh. M. Shadimetov. Construction of weight lattice optimal quadrature formulas in the space $L_2^m(0,N)$. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 3, pp. 275-293. http://geodesic.mathdoc.fr/item/SJVM_2002_5_3_a6/