Recovery and integration of functions from the Korobovs anisotropic class
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 3, pp. 255-266.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of approximate recovery of functions from the class $E^{r_1\dots,r_s}$ by means of an operator in the form of ал algebraic polynomial is considered. The algorithm based on application of the theory of divisors in cyclotomic fields of the algebraic integers is applied to determination of optimum factors of an operator. The problem of approximate integration of functions from the class $E^{r_1\dots,r_s}$ in the domain distinct from $[0,1]^s$ is considered.
@article{SJVM_2002_5_3_a4,
     author = {I. M. Kovaleva},
     title = {Recovery and integration of functions from the {Korobovs} anisotropic class},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {255--266},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2002_5_3_a4/}
}
TY  - JOUR
AU  - I. M. Kovaleva
TI  - Recovery and integration of functions from the Korobovs anisotropic class
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2002
SP  - 255
EP  - 266
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2002_5_3_a4/
LA  - ru
ID  - SJVM_2002_5_3_a4
ER  - 
%0 Journal Article
%A I. M. Kovaleva
%T Recovery and integration of functions from the Korobovs anisotropic class
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2002
%P 255-266
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2002_5_3_a4/
%G ru
%F SJVM_2002_5_3_a4
I. M. Kovaleva. Recovery and integration of functions from the Korobovs anisotropic class. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 3, pp. 255-266. http://geodesic.mathdoc.fr/item/SJVM_2002_5_3_a4/

[1] Korobov N. M., “Priblizhennoe vychislenie kratnykh integralov s pomoschyu metodov teorii chisel”, Dokl. AN SSSR, 115:6 (1957), 1062–1065 | MR | Zbl

[2] Hlawka E., “Zur angenaherten Berechung mehrfacher Integrale”, Monactsh. Math., 66 (1962), 140–151 | DOI | MR | Zbl

[3] Temirgaliev N., “Primenenie teorii divizorov k chislennomu integrirovaniyu periodicheskikh funktsii mnogikh peremennykh”, Matem. sb., 181:4 (1990), 490–505

[4] Voronin S. M., “O kvadraturnykh formulakh”, Izv. RAN, ser. matem., 58:5 (1994), 189–194 | MR

[5] Temirgaliev N., “Ob effektivnosti algoritmov chislennogo integrirovaniya, svyazannykh s teoriei divizorov v krugovykh polyakh”, Matem. zametki, 61:2 (1997), 297–301 | MR | Zbl

[6] Roth R. F., “On irregularities of distribution”, Mathematika, 1:2 (1954), 73–79 | MR | Zbl

[7] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963 | MR | Zbl

[8] Temirgaliev N., “Teoretiko-chislovye metody i teoretiko-veroyatnostnyi podkhod k zadacham analiza. Teoriya vlozhenii i priblizhenii, absolyutnaya skhodimost i preobrazovaniya ryadov Fure”, Vestnik Evraziiskogo universiteta, 1997, no. 3, 90–144 | MR

[9] Hua Loo Keng, Wang Yuan, Application of Number Theory of Numerical Analysis, Springer Verlag, 1981 | MR

[10] Wang Yuan, “Number theoretic method in numerical analysis”, Number theory and its applications in China, Contemporary Math., 77, 1988, 63–82 | MR | Zbl

[11] Korobov N. M., “Primenenie teoretiko-chislovykh setok v integralnykh uravneniyakh i interpolyatsionnykh formulakh”, Tr. MIAN, 60, 1961, 195–210 | MR | Zbl

[12] Korobov N. M., Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989 | MR | Zbl

[13] Bailov E. A., “Chislennoe integrirovanie funktsii iz anizotropnykh klassov funktsii mnogikh peremennykh”, Vestnik KazGU, ser. matematika, mekhanika, informatika, 1997, no. 9, 44–55

[14] Bailov E. A., Priblizhennoe integrirovanie i vosstanovlenie funktsii iz anizotropnykh klassov i vosstanovlenie reshenii uravneniya Puassona, Avtoref. diss. $\dots$ kand. fiz.-mat. nauk, Almaty, 1998

[15] Solodov V. M., “Integrirovanie po nekotorym oblastyam, otlichnym ot edinichnogo kuba”, Zhurn. vychisl. matem. i mat. fiziki, 8:6 (1968), 1334–1341 | MR | Zbl