On stability in $\ell_p$ of some difference schemes for the transport equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 3, pp. 199-214

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work, the stability in the space $\ell_p$, $1$, for a wide class of difference analogs of kinetic transport as well as for the Carleman nonlinear system in the Baltazar equation theory has been proved. The stability in the norm of the space $\ell_p$ results, as a particular case, in the stability in $\ell_2$, which coincides with the stability in the energy space, and at $p=\infty$, with the norm in the space $C$. In this case, the result is gained in the manner similar to the methods of obtaining a priori estimations in the norm of the space $L_p$ for differential problems by themselves.
@article{SJVM_2002_5_3_a0,
     author = {A. Sh. Akysh (Akishev)},
     title = {On stability in $\ell_p$ of some difference schemes for the transport equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {199--214},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2002_5_3_a0/}
}
TY  - JOUR
AU  - A. Sh. Akysh (Akishev)
TI  - On stability in $\ell_p$ of some difference schemes for the transport equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2002
SP  - 199
EP  - 214
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2002_5_3_a0/
LA  - ru
ID  - SJVM_2002_5_3_a0
ER  - 
%0 Journal Article
%A A. Sh. Akysh (Akishev)
%T On stability in $\ell_p$ of some difference schemes for the transport equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2002
%P 199-214
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2002_5_3_a0/
%G ru
%F SJVM_2002_5_3_a0
A. Sh. Akysh (Akishev). On stability in $\ell_p$ of some difference schemes for the transport equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 3, pp. 199-214. http://geodesic.mathdoc.fr/item/SJVM_2002_5_3_a0/