On solution of an ill-posed problem for a~semilinear differential equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 2, pp. 189-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

An extensive literature is devoted to the ill-posed problems connected with a nonlinear operator and differential-operator equations. A regularization method is usually constructed by using the “operator” approach and special properties of the problem operator (for instance, monotonicity). In this paper, stable approximate solutions of an ill-posed differential problem are constructed by a method of the quasi-inversion type. The convergence of the constructed approximate solutions to the exact solution of the initial problem is investigated.
@article{SJVM_2002_5_2_a7,
     author = {V. P. Tanana and I. V. Tabarintseva},
     title = {On solution of an ill-posed problem for a~semilinear differential equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {189--198},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a7/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - I. V. Tabarintseva
TI  - On solution of an ill-posed problem for a~semilinear differential equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2002
SP  - 189
EP  - 198
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a7/
LA  - ru
ID  - SJVM_2002_5_2_a7
ER  - 
%0 Journal Article
%A V. P. Tanana
%A I. V. Tabarintseva
%T On solution of an ill-posed problem for a~semilinear differential equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2002
%P 189-198
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a7/
%G ru
%F SJVM_2002_5_2_a7
V. P. Tanana; I. V. Tabarintseva. On solution of an ill-posed problem for a~semilinear differential equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 2, pp. 189-198. http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a7/

[1] Lattes R., Lions Zh.-L., Metod kvaziobrascheniya i ego prilozheniya, Mir, M., 1970 | MR | Zbl

[2] Tanana V. P., Tabarintseva E. V., “About the optimality of the quasi-inversion type method in the solution of mathematical physics inverse problems”, Journal of Inverse and Ill-Posed Problems, 1:3 (1993), 245–257 | DOI | MR | Zbl

[3] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[4] Gaevskii X., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[5] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[6] Kokurin M. Yu., Operatornaya regulyarizatsiya i issledovanie nelineinykh monotonnykh zadach, Ioshkar-Ola, 1998