Estimation of derivatives of solutions to boundary value problems by Monte Carlo methods
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 2, pp. 175-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

Monte Carlo methods offer the possibility to estimate derivatives of a solution to a boundary value problem even without estimating the solution to the problem making them attractive in various practical applications. In this paper, Monte Carlo methods are applied to estimate derivatives of a solution to the third boundary value problem of the diffusion equation with a constant complex parameter with respect to the parameter as well as with respect to a spatial variable. Moreover, the estimation of the spatial derivative of non-centric Green's function for the diffusion operator in a ball is used. All the derivatives estimators are obtained by the method of “walking on spheres” with boundary reflection. Based on the derivatives estimators of the solution to the diffusion equation problem, derivatives of a solution of the heat equation boundary value problem with respect to the time variable, the spatial variable, and a constant real parameter are obtained.
@article{SJVM_2002_5_2_a6,
     author = {B. V. Men'shchikov},
     title = {Estimation of derivatives of solutions to boundary value problems by {Monte} {Carlo} methods},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {175--187},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a6/}
}
TY  - JOUR
AU  - B. V. Men'shchikov
TI  - Estimation of derivatives of solutions to boundary value problems by Monte Carlo methods
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2002
SP  - 175
EP  - 187
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a6/
LA  - ru
ID  - SJVM_2002_5_2_a6
ER  - 
%0 Journal Article
%A B. V. Men'shchikov
%T Estimation of derivatives of solutions to boundary value problems by Monte Carlo methods
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2002
%P 175-187
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a6/
%G ru
%F SJVM_2002_5_2_a6
B. V. Men'shchikov. Estimation of derivatives of solutions to boundary value problems by Monte Carlo methods. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 2, pp. 175-187. http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a6/

[1] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, M., 1982 | MR

[2] Makarov R., “Monte Carlo methods for solving boundary value problems of second and third kinds”, Rus. J. Numer. Anal. Math. Model., 13:2 (1998), 117–131 | DOI | MR | Zbl

[3] Menchtchikov B. V., “Monte-Carlo method for solving boundary value problems for a diffusion equation with complex parameter. The Fourier transform in boundary value problems for a heat conduction equation”, Rus. J. Numer. Anal. Math. Model., 15:6 (2000), 489–506 | DOI | MR | Zbl

[4] Mikhailov G. A., New Monte Carlo Methods with Estimating Derivatives, VSP, Utrecht and Tokyo, 1995 | MR | Zbl

[5] Mikhailov G. A., Vesovye metody Monte-Karlo, Izd-vo SO RAN, Novosibirsk, 2000 | MR

[6] Mikhailov G. A., Makarov R. N., “Reshenie kraevykh zadach vtorogo i tretego roda metodami Monte Karlo”, Sib. mat. zhurn., 38:3 (1997), 603–614 | Zbl

[7] Mikhailov G. A., Makarov R. N., “Parametricheskoe differentsirovanie i otsenki sobstvennykh chisel metodom Monte-Karlo”, Sib. mat. zhurn., 39:4 (1998), 931–941 | MR

[8] Mikhailov G. A., Menshikov B. V., “Reshenie kraevykh zadach s kompleksnymi parametrami metodom Monte-Karlo”, Sib. mat. zhurn., 37:4 (1996), 881–888 | MR | Zbl

[9] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, M., 1953