Reduction of a three-point difference scheme on the infinite interval to a~scheme with a~finite number of grid nodes
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 2, pp. 149-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

A three-point difference scheme with an infinite number of grid nodes is considered. The method of reduction of such scheme to the scheme with a finite number of grid nodes is investigated. This method is based on the extraction of a set of solutions satisfying the limit conditions on infinity. The results of numerical experiments are discussed.
@article{SJVM_2002_5_2_a4,
     author = {A. I. Zadorin and A. V. Chekanov},
     title = {Reduction of a three-point difference scheme on the infinite interval to a~scheme with a~finite number of grid nodes},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {149--161},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a4/}
}
TY  - JOUR
AU  - A. I. Zadorin
AU  - A. V. Chekanov
TI  - Reduction of a three-point difference scheme on the infinite interval to a~scheme with a~finite number of grid nodes
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2002
SP  - 149
EP  - 161
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a4/
LA  - ru
ID  - SJVM_2002_5_2_a4
ER  - 
%0 Journal Article
%A A. I. Zadorin
%A A. V. Chekanov
%T Reduction of a three-point difference scheme on the infinite interval to a~scheme with a~finite number of grid nodes
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2002
%P 149-161
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a4/
%G ru
%F SJVM_2002_5_2_a4
A. I. Zadorin; A. V. Chekanov. Reduction of a three-point difference scheme on the infinite interval to a~scheme with a~finite number of grid nodes. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 2, pp. 149-161. http://geodesic.mathdoc.fr/item/SJVM_2002_5_2_a4/

[1] Zadorin A. I., “Trekhtochechnaya raznostnaya skhema na polubeskonechnom intervale”, Vychislitelnye tekhnologii, 1:2 (2000), 46–55 | MR

[2] Zadorin A. I., “Reduktsiya kraevoi zadachi dlya lineinogo vektornogo raznostnogo uravneniya vtorogo poryadka k konechnomu chislu uzlov”, Zhurn. vychisl. matem. i mat. fiziki, 40:4 (2000), 546–556 | MR | Zbl

[3] Balla K., “On asymptotic behavior of solutions to some difference equations. Advances in difference equations”, Proc. Sec. Int. Conf. on Difference Equations (Veszprem, Hungary, 1995), Gordon Breach, 1997, 67–80 | MR

[4] Abramov A. A., “O perenose usloviya ogranichennosti dlya nekotorykh sistem obyknovennykh lineinykh differentsialnykh uravnenii”, Zhurn. vychisl. matem. i mat. fiz., 1:4 (1961), 733–737 | MR | Zbl

[5] Abramov A. A., Balla K., Konyukhova N. B., “Perenos granichnykh uslovii iz osobykh tochek dlya sistem obyknovennykh differentsialnykh uravnenii”, Soobsch. po vychisl. matem., VTs AN SSSR, M., 1981 | MR

[6] Zadorin A. I., “Perenos kraevogo usloviya iz beskonechnosti pri chislennom reshenii uravnenii vtorogo poryadka s malym parametrom”, Sib. zhurn. vychislitel. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 2:1 (1999), 21–35 | MR

[7] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR