Error estimation for multidimensional analogue of the polygon of frequencies method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 1, pp. 11-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

Decomposition to three components for $L_2$-error of multi-dimensional analogue of the polygon of frequencies method is obtained. For every component an upper bound is constructed. The statement about the finiteness of maximum of variances of stochastic estimates in grid nodes is derived. Upper bounds for displacements of estimates in nodes for $C$-approach and $L_2$-approach are obtained. On that basis it is shown that the application of smooth approximations of the solution for the polygon of frequencies method is inexpedient.
@article{SJVM_2002_5_1_a1,
     author = {A. V. Voitishek and N. G. Golovko and E. V. Shkarupa},
     title = {Error estimation for multidimensional analogue of the polygon of frequencies method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {11--24},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2002_5_1_a1/}
}
TY  - JOUR
AU  - A. V. Voitishek
AU  - N. G. Golovko
AU  - E. V. Shkarupa
TI  - Error estimation for multidimensional analogue of the polygon of frequencies method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2002
SP  - 11
EP  - 24
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2002_5_1_a1/
LA  - ru
ID  - SJVM_2002_5_1_a1
ER  - 
%0 Journal Article
%A A. V. Voitishek
%A N. G. Golovko
%A E. V. Shkarupa
%T Error estimation for multidimensional analogue of the polygon of frequencies method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2002
%P 11-24
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2002_5_1_a1/
%G ru
%F SJVM_2002_5_1_a1
A. V. Voitishek; N. G. Golovko; E. V. Shkarupa. Error estimation for multidimensional analogue of the polygon of frequencies method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 5 (2002) no. 1, pp. 11-24. http://geodesic.mathdoc.fr/item/SJVM_2002_5_1_a1/

[1] Mikhailov G. A., Minimization of computational costs of non-analogue Monte Carlo methods, Series of Soviet and East European Mathematics, 5, World Scientific, Singapore, 1991 | MR

[2] Shkarupa E. V., Voytishek A. V., “Optimization of discretely stochastic procedures for globally estimating the solution of an integral equation of the second kind”, Russ. J. of Numer. Anal. and Math. Modelling, 12:6 (1997), 525–546 | DOI | MR | Zbl

[3] Plotnikov M. Yu., Shkarupa E. V., “Error estimation and optimization in $C$-space of Monte Carlo iterative solution of nonlinear integral equations”, Monte Carlo Methods and Applications, 4:1 (1998), 53–71 | DOI | MR | Zbl

[4] Shkarupa E. V., “Otsenka pogreshnosti i optimizatsiya v $S$-metrike metoda poligona chastot”, Zhurn. vychisl. matem. i mat. fiz., 38:4 (1998), 612–626 | MR | Zbl

[5] Shkarupa E. V., Voytishek A. V., “Convergence of discrete-stochastic numerical procedures with independent or weakly dependent estimators at grid nodes”, J. of Statistical Planning and Inference, 85 (2000), 199–211 | DOI | MR | Zbl

[6] Voitishek A. V., “O dopustimom klasse vospolnenii dlya diskretno-stokhasticheskikh protsedur globalnoi otsenki funktsii”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 1:2 (1998), 119–134 | MR

[7] Mikhailov G. A., Parametric Estimates by the Monte Carlo Method, VSP, Utrecht, 1999 | MR | Zbl

[8] Mikhailov G. A., Vesovye metody Monte-Karlo, Izd-vo SO RAN, Novosibirsk, 2000 | MR

[9] Voytishek A. V., “Convergence and optimization of smooth discretely stochastic procedures for globally estimating the solution of an integral equation of the second kind”, Russ. J. Numer. Anal. Math. Modelling, 14:2 (1999), 177–191 | DOI | MR | Zbl

[10] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[11] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR

[12] Voitishek A. V., “Primenenie approksimatsii Strenga–Fiksa pri vychislenii mnogokratnykh integralov metodom Monte-Karlo”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 2:2 (1999), 111–122 | MR

[13] Mikhailov G. A., Optimizatsiya vesovykh metodov Monte-Karlo, Nauka, M., 1985 | MR

[14] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, M., 1982 | MR

[15] Litbetter M., Rotsen X., Lingren G., Ekstremumy sluchainykh posledovatelnostei i protsessov, Mir, M., 1989 | MR

[16] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. 2, OGIZ, M., 1948

[17] Kurant R., Kurs differentsialnogo i integralnogo ischisleniya, T. 2, Nauka, M., 1970