Monte Carlo solution of a~parabolic equation with a~random coefficient
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 4, pp. 389-402.

Voir la notice de l'article provenant de la source Math-Net.Ru

A parabolic equation is considered. Its coefficient in the linear term, the right-hand side, and the initial value of the equation are random functions. Some Monte Carlo estimators for sample values of its solution and for some functionals are constructed and verified.
@article{SJVM_2001_4_4_a7,
     author = {N. A. Simonov},
     title = {Monte {Carlo} solution of a~parabolic equation with a~random coefficient},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {389--402},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a7/}
}
TY  - JOUR
AU  - N. A. Simonov
TI  - Monte Carlo solution of a~parabolic equation with a~random coefficient
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2001
SP  - 389
EP  - 402
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a7/
LA  - en
ID  - SJVM_2001_4_4_a7
ER  - 
%0 Journal Article
%A N. A. Simonov
%T Monte Carlo solution of a~parabolic equation with a~random coefficient
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2001
%P 389-402
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a7/
%G en
%F SJVM_2001_4_4_a7
N. A. Simonov. Monte Carlo solution of a~parabolic equation with a~random coefficient. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 4, pp. 389-402. http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a7/

[1] Artemiev S. S., Averina T. A., Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations, VSP, The Netherlands, Utrecht, 1997 | MR | Zbl

[2] Bally V., Talay D., “The law of the Euler scheme for stochastic differential equations (I): convergence rate of the distribution function”, Probability Theory and Related Fields, 104:1 (1996), 43–60 | DOI | MR | Zbl

[3] Bécus G. A., “Random generalized solutions to the heat equation”, J. Math. Anal. and Appl., 90 (1977), 93–102 | DOI | MR

[4] Carmona R., Lacroix J., Spectral Theory of Schrödinger Operators, Birkhäuser, Boston, 1990 | MR | Zbl

[5] Chow P.-L., “On the exact and approximate solutions of a random parabolic equation”, SIAM J. Appl. Math., 27:3 (1974), 376–397 | DOI | MR

[6] Dynkin E. B., Markov Processes, Academic Press, New York, 1965

[7] Ermakov S. M., Mikhailov G. A., Statistical Modelling, Nauka, Moscow, 1982 (in Russian) | MR

[8] Friedman A., Partial Differential Equations of Parabolic Type, Prentice-Hall, 1964 | MR | Zbl

[9] Il'in A. M., Kalashnikov A. S., Oleinik O. A., “Linear second order equations of parabolic type”, Uspekhi Mat. Nauk, 17:3 (1962), 3–146 (in Russian) | MR

[10] Kac M., “On distribution of certain Wiener functionals”, Trans. Amer. Math. Soc., 65 (1949), 1–13 | MR | Zbl

[11] Kunita H., Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[12] Kurbanmuradov O., Sabelfeld K. K., “Solution of the multidimensional problems of potential theory by the walk on boundary method”, Chislennye metody mehaniki sploshnoi sredy, 15:1 (1984), 77–102 (in Russian) | MR | Zbl

[13] Mikhailov G. A., “Numerical construction of a random field with a given spectral density”, Doklady USSR Ac. Sci., 238:4 (1978), 408–410 (in Russian) | MR

[14] Rosenblatt M., “On a class of Markov processes”, Trans. Amer. Math. Soc., 88 (1951), 120–135 | MR

[15] Sabelfeld K. K., Monte Carlo Methods in Boundary Value Problems, Springer-Verlag, 1991 | MR | Zbl

[16] Simonov N. A., “Stochastic iterative methods of solving parabolic type equations”, Sib. Mat. Zhurnal., 38:5 (1997), 1146–1162 (in Russian) | MR

[17] Talay D., “Simulation and numerical analysis of stochastic differential systems: a review”, Probabilistic Methods in Applied Physics, Lect. Notes in Physics, 451, eds. P. Kree and W. Wedig, Springer-Verlag, 1995, 54–96 | Zbl

[18] Talay D., Tubaro L., “Expansion of the global error for numerical schemes solving stochastic differential equations”, Stochastic Analysis and Applications, 8:4 (1990), 94–120 | DOI | MR

[19] Vladimirov V. S., Equations of Mathematical Physics, Nauka, Moscow, 1981 (in Russian) | MR