Partition of the spectrum by Hermite forms and one-dimensional spectral matrix portraits
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 4, pp. 353-360.

Voir la notice de l'article provenant de la source Math-Net.Ru

There exist classes of (in general) nonselfadjoint matrix operators whose eigenvalues of a spectral cluster are ill-conditioned. In applications, it is convenient to describe properties of such operators in terms of some criteria for spectral dichotomy. It is convenient to divide the spectrum by a series of plane curves depending on a single parameter. The graphical dependence of a criterion for dichotomy on this parameter is naturally regarded as spectral portrait. Criteria for dichotomy are connected with Hermite forms. (Recall that Hermite forms appeared in 1856 in solving a similar problem studied by Hermite).
@article{SJVM_2001_4_4_a4,
     author = {S. K. Godunov},
     title = {Partition of the spectrum by {Hermite} forms and one-dimensional spectral matrix portraits},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {353--360},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a4/}
}
TY  - JOUR
AU  - S. K. Godunov
TI  - Partition of the spectrum by Hermite forms and one-dimensional spectral matrix portraits
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2001
SP  - 353
EP  - 360
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a4/
LA  - en
ID  - SJVM_2001_4_4_a4
ER  - 
%0 Journal Article
%A S. K. Godunov
%T Partition of the spectrum by Hermite forms and one-dimensional spectral matrix portraits
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2001
%P 353-360
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a4/
%G en
%F SJVM_2001_4_4_a4
S. K. Godunov. Partition of the spectrum by Hermite forms and one-dimensional spectral matrix portraits. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 4, pp. 353-360. http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a4/

[1] Wilkinson J. H., The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965 | MR | Zbl

[2] Godunov S. K., Modern Aspects of Linear Algebra, Translations of Math. Monographs., 175, American Math. Soc., 1998 | MR | Zbl

[3] Bulgakov A. Ya., “The basis of guaranteed accuracy in the problem of separation of invariant subspaces for nonselfadjoint matrices”, Trudy Inst. Mat. Sibirsk. Otdel. Akad. Nauk SSSR, 15, 1998, 12–92 ; English transl.: Siberian Advances in Math., 1:1 (1997), 64–108 ; 1:2, 1–56 | MR | MR | MR

[4] Siberian Math. J., 27:5 (1986), 649–660 | DOI | MR | Zbl

[5] Siberian Math. J., 29:5 (1988), 734–744 | DOI | MR | Zbl

[6] Godunov S. K. and Nechepurenko Yu. M., “Bounds and Stiff components based on the Integral Performance Criterion for Dichotomy”, Comp. Maths. Math. Phys., 40:1 (2000), 35–42 | MR

[7] Keldysh M. V., “On eigenvalues and eigenfunctions of some classes of non-self-adjoint equations”, Dokl. Akad. Nauk SSSR, 77:1 (1951), 11–14

[8] Lidskii V. B., “On the summability of series over principal vectors of non-self-adjoint operators”, Trudy Moskov. Mat. Obschestva, 11, 1962, 3–35 | MR

[9] Keldysh M. V., Lidskii V. B., “Questions of the spectral theory of non-self-adjoint operators”, Trudy, Fourth All-Union Mathematical Congress, v. 1, 1963, 101–120 | Zbl

[10] Godunov S. K., Nechepurenko Yu. M., “The annular stratification of the matrix spectrum”, Comp. Maths. Math. Phys., 40:7 (2000), 939–944 | MR | Zbl