Partition of the spectrum by Hermite forms and one-dimensional spectral matrix portraits
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 4, pp. 353-360
Voir la notice de l'article provenant de la source Math-Net.Ru
There exist classes of (in general) nonselfadjoint matrix operators whose eigenvalues of a spectral cluster
are ill-conditioned. In applications, it is convenient to describe properties of such operators in terms of some
criteria for spectral dichotomy. It is convenient to divide the spectrum by a series of plane curves depending
on a single parameter. The graphical dependence of a criterion for dichotomy on this parameter is naturally
regarded as spectral portrait.
Criteria for dichotomy are connected with Hermite forms. (Recall that Hermite forms appeared in 1856 in solving a similar problem studied by Hermite).
@article{SJVM_2001_4_4_a4,
author = {S. K. Godunov},
title = {Partition of the spectrum by {Hermite} forms and one-dimensional spectral matrix portraits},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {353--360},
publisher = {mathdoc},
volume = {4},
number = {4},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a4/}
}
TY - JOUR AU - S. K. Godunov TI - Partition of the spectrum by Hermite forms and one-dimensional spectral matrix portraits JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2001 SP - 353 EP - 360 VL - 4 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a4/ LA - en ID - SJVM_2001_4_4_a4 ER -
S. K. Godunov. Partition of the spectrum by Hermite forms and one-dimensional spectral matrix portraits. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 4, pp. 353-360. http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a4/