On iterative methods of gradient type for solving nonlinear ill-posed equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 4, pp. 317-329.

Voir la notice de l'article provenant de la source Math-Net.Ru

Iterative methods of gradient type for the approximate solution of noisy nonlinear equations without the property of regularity are proposed and investigated. We prove the convergence of the approximations generated by the methods to a neighborhood of the solution with a diameter proportional to the magnitude of errors in the input data and in a sourcewise representation of the initial residual. This is ensured by a suitable combination of the method of gradient descent for a residual functional with approximate projecting onto special finite-dimensional subspaces.
@article{SJVM_2001_4_4_a2,
     author = {A. B. Bakushinskii and M. Yu. Kokurin and N. A. Yusupova},
     title = {On iterative methods of gradient type for solving nonlinear ill-posed equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {317--329},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a2/}
}
TY  - JOUR
AU  - A. B. Bakushinskii
AU  - M. Yu. Kokurin
AU  - N. A. Yusupova
TI  - On iterative methods of gradient type for solving nonlinear ill-posed equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2001
SP  - 317
EP  - 329
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a2/
LA  - ru
ID  - SJVM_2001_4_4_a2
ER  - 
%0 Journal Article
%A A. B. Bakushinskii
%A M. Yu. Kokurin
%A N. A. Yusupova
%T On iterative methods of gradient type for solving nonlinear ill-posed equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2001
%P 317-329
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a2/
%G ru
%F SJVM_2001_4_4_a2
A. B. Bakushinskii; M. Yu. Kokurin; N. A. Yusupova. On iterative methods of gradient type for solving nonlinear ill-posed equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 4, pp. 317-329. http://geodesic.mathdoc.fr/item/SJVM_2001_4_4_a2/

[1] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR

[2] Bakushinsky A., Goncharsky A., Ill-posed problems: Theory and applications, Kluwer, Dordrecht, 1996

[3] Bakushinskii A. B., “Iterativnye metody dlya resheniya nelineinykh operatornykh uravnenii bez svoistva regulyarnosti”, Fundamentalnaya i prikladnaya matematika, 3:3 (1997), 685–692 | MR

[4] Bakushinskii A. B., “O skorosti skhodimosti iteratsionnykh protsessov dlya nelineinykh operatornykh uravnenii”, Zhurn. vychisl. matem. i mat. fiziki, 38:4 (1998), 559–563 | MR | Zbl

[5] Bakushinskii A. B., “Iterativnye metody gradientnogo tipa dlya neregulyarnykh operatornykh uravnenii”, Zhurn. vychisl. matem. i mat. fiziki, 38:12 (1998), 1962–1966 | MR | Zbl

[6] Bakushinskii A. B., “Iterativnye metody gradientnogo tipa s proektirovaniem na fiksirovannoe podprostranstvo dlya resheniya neregulyarnykh operatornykh uravnenii”, Zhurn. vychisl. matem. i mat. fiziki, 40:10 (2000), 1447–1450 | MR

[7] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[8] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[9] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 | MR | Zbl