A~finite difference method for a viscous one-dimensional conducting compressible gas with a~contact discontinuity
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 3, pp. 295-303

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a priori estimates for the solution of one class of the difference scheme for a viscous onedimensional conducting gas with a contact discontinuity are obtained. The stability and convergence of the difference problem are demonstrated by using the a priori estimates obtained. The Newton method for the system of nonlinear equations under study is justified.
@article{SJVM_2001_4_3_a7,
     author = {B. R. Rysbaiuly},
     title = {A~finite difference method for a viscous one-dimensional conducting compressible gas with a~contact discontinuity},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {295--303},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a7/}
}
TY  - JOUR
AU  - B. R. Rysbaiuly
TI  - A~finite difference method for a viscous one-dimensional conducting compressible gas with a~contact discontinuity
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2001
SP  - 295
EP  - 303
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a7/
LA  - ru
ID  - SJVM_2001_4_3_a7
ER  - 
%0 Journal Article
%A B. R. Rysbaiuly
%T A~finite difference method for a viscous one-dimensional conducting compressible gas with a~contact discontinuity
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2001
%P 295-303
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a7/
%G ru
%F SJVM_2001_4_3_a7
B. R. Rysbaiuly. A~finite difference method for a viscous one-dimensional conducting compressible gas with a~contact discontinuity. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 3, pp. 295-303. http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a7/