Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2001_4_3_a3, author = {A. L. Karchevsky and A. G. Fatianov}, title = {Numerical solution of the inverse problem for a~system of elasticity with the aftereffect for a~vertically inhomogeneous medium}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {259--268}, publisher = {mathdoc}, volume = {4}, number = {3}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a3/} }
TY - JOUR AU - A. L. Karchevsky AU - A. G. Fatianov TI - Numerical solution of the inverse problem for a~system of elasticity with the aftereffect for a~vertically inhomogeneous medium JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2001 SP - 259 EP - 268 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a3/ LA - ru ID - SJVM_2001_4_3_a3 ER -
%0 Journal Article %A A. L. Karchevsky %A A. G. Fatianov %T Numerical solution of the inverse problem for a~system of elasticity with the aftereffect for a~vertically inhomogeneous medium %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2001 %P 259-268 %V 4 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a3/ %G ru %F SJVM_2001_4_3_a3
A. L. Karchevsky; A. G. Fatianov. Numerical solution of the inverse problem for a~system of elasticity with the aftereffect for a~vertically inhomogeneous medium. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 3, pp. 259-268. http://geodesic.mathdoc.fr/item/SJVM_2001_4_3_a3/
[1] N. N. Puzyrev (red.), Poperechnye i obmennye volny v seismorazvedke, Nedra, M., 1967
[2] Nefedkina T. N., “Vydelenie obmennykh otrazhennykh PS-voln po sisteme OGT s nesimmetrichnymi vyborkami”, Geologiya i Geofizika, 1980, no. 3, 113–122
[3] Nefedkina T. N., Kondrateva G. P., Oleinik L. V., “Tsifrovaya obrabotka obmennykh otrazhennykh voln”, Geologiya i Geofizika, 1980, no. 4, 67–77
[4] Puzyrev N. N., Trigubov A. V., Brodov L. Yu. i dr., Seismicheskaya razvedka metodom poperechnykh i obmennykh voln, Nedra, M., 1985
[5] N. N. Puzyrev (red.), Mnogovolnovye seismicheskie issledovaniya, Nauka, M., 1987
[6] Karchevsky A. L., “Numerical solution of the inverse problem for the system of elasticity for vertically inhomogeneous medium”, Bulletin of Novosibirsk Computing Center, Series Mathematical Modeling in Geophysics, 5 (1999), 135–142
[7] Alekseev A. S., Dobrinskii V. I., “Nekotorye voprosy prakticheskogo ispolzovaniya obratnykh dinamicheskikh zadach seismiki”, Matematicheskie problemy geofiziki, ch. 2, v. 6, VTs SO AN SSSR, Novosibirsk, 1975, 7–53
[8] Shemyakin E. I., Dinamicheskie zadachi teorii uprugosti i plastichnosti, NGU, Novosibirsk, 1968
[9] Fatyanov A. G., Mikhailenko B. G., “Metod rascheta nestatsionarnykh volnovykh polei v neuprugikh sloisto-neodnorodnykh sredakh”, DAN, 301:4 (1988), 834–839
[10] Fatyanov A. G., Nestatsionarnye seismicheskie volnovye polya v neodnorodnykh anizotropnykh sredakh s pogloscheniem energii, Preprint / AN SSSR. Sib. otd-nie. VTs; 857, Novosibirsk, 1989 | MR
[11] Fatyanov A. G., “Poluanaliticheskii metod resheniya pryamykh dinamicheskikh zadach v sloistykh sredakh”, DAN, 310:2 (1990), 323–327 | MR
[12] Avdeev A. V., Goruynov E. V., “Inverse problem of acoustics: determination of source wavelet and velocity”, J. of Inverse and Ill-posed Problems, 4:6 (1996), 475–482 | DOI | MR | Zbl
[13] Avdeev A. V., Goruynov E. V., Soboleva O. N., Priimenko V. I., “Numerical solution of some direct and inverse problems of electromagnetoelasticity”, J. of Inverse and Ill-posed Problems, 7:5 (1999), 453–462 | DOI | MR
[14] Avdeev A. V., Lavrentiev-jr. M. M., Priimenko V. I., Inverse Problems and Some Applications, ICMMG Publ., Novosibirsk, 1999
[15] Alekseev A. S., Avdeev A. V., Fatyanov A. G., Cheverda V. A., “Zamknutyi tsikl matematicheskogo modelirovaniya volnovykh protsessov v vertikalno-neodnorodnykh sredakh (pryamye i obratnye zadachi)”, Matematicheskoe modelirovanie, 3:10 (1991), 80–94 | MR | Zbl
[16] Alekseev A. S., Avdeev A. V., Fatianov A. G., Cheverda V. A., “Wave processes in verticallyinhomogeneous media: a new strategy for a velocity inversion”, Inverse Problems, 9:3 (1993), 367–390 | DOI | MR | Zbl
[17] Bamberger A., Chavent G., Lailly P., “Une application de la tlieori du control a un probleme inverse de seismique”, Ann. Geophys., 33:1–2 (1977), 183–200
[18] Bamberger A., Chavent G., Hemon Ch., Lailly P., “Inversion of normal incidence seismograms”, Geophysics, 47 (1982), 757–770 | DOI | Zbl
[19] Cao D., Boydoun W. B., Singh S. C., Tarantola A., “A Simultaneous Inversion for Background Velocity and Impedance Maps”, Geophysics, 55 (1990), 458–469 | DOI
[20] Cook D. A., Schneider W. A., “Generalized linear inversion of reflection seismic data”, Geophysics, 48 (1983), 665–676 | DOI
[21] Santosa F., Symes W. W., An Analysis of Least-squares Velocity Inversion., Geophysical Monograph Series, 4, Society of Exploration Geophysicists, 1989
[22] Symes W. W., “A Differential resemblance algorithm for the inverse problem of reflection seismology”, Computers Math. Applic., 22:4–5 (1991), 147–178 | DOI | MR | Zbl
[23] Hildebrand S. I., McMechan G. A., “1-D seismic inversion of dual wavefield data: Part I, Nonuniqueness and stability”, Geophysics, 59:5 (1994), 782–788 | DOI
[24] Hildebrand S. I., McMechan G. A., “1-D seismic inversion of dual wavefield data: Part II, A Gulf of Mexico example”, Geophysics, 59:5 (1994), 789–800 | DOI