On a numerical solution of matrix polynomial equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 2, pp. 151-162
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we propose some direct and iterative algorithms for the solution of matrix polynomial equations of the form $AX+AX^2+\dots+AX^n=C$. A local convergence theorem of iterative algorithms is given, and the restrictions involved by this theorem are discussed. We give an estimation of convergence speed for these methods and make a number of useful notes for it's effective numerical implementation. Explicitly we discuss a special case, arising in problems of parameter estimation of linear dynamic stochastic systems.
@article{SJVM_2001_4_2_a3,
author = {E. V. Dulov and N. A. Andrianova},
title = {On a~numerical solution of matrix polynomial equations},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {151--162},
year = {2001},
volume = {4},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a3/}
}
E. V. Dulov; N. A. Andrianova. On a numerical solution of matrix polynomial equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 2, pp. 151-162. http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a3/
[1] Dulov E. V., Algoritmy s funktsionalnoi obratnoi svyazyu identifikatsii optimalnykh diskretnykh filtrov, Avtoref. dis. $\dots$ kand. fiz.-mat. nauk, UlGU, Ulyanovsk, 1997
[2] Dulov E. V., “Algorithms for solving matrix polynomial equations of special form”, The Korean J. of Comp. Appl. Math., 7:1 (2000), 41–60 | MR | Zbl
[3] Ortega Dzh., Pul U., Vvedenie v chislennye metody resheniya differentsialnykh uravnenii, Nauka, M., 1986 | MR | Zbl
[4] Louson Ch., Khenson R., Chislennoe reshenie zadach metoda naimenshikh kvadratov, Nauka, M., 1986 | MR
[5] Khorn R., Dzhonson K., Matrichnyi analiz, Mir, M., 1989 | MR