On a~numerical solution of matrix polynomial equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 2, pp. 151-162
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we propose some direct and iterative algorithms for the solution of matrix polynomial equations of the form $AX+AX^2+\dots+AX^n=C$. A local convergence theorem of iterative algorithms is given, and the restrictions involved by this theorem are discussed. We give an estimation of convergence speed for these methods and make a number of useful notes for it's effective numerical implementation. Explicitly we discuss a special case, arising in problems of parameter estimation of linear dynamic stochastic systems.
@article{SJVM_2001_4_2_a3,
author = {E. V. Dulov and N. A. Andrianova},
title = {On a~numerical solution of matrix polynomial equations},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {151--162},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a3/}
}
TY - JOUR AU - E. V. Dulov AU - N. A. Andrianova TI - On a~numerical solution of matrix polynomial equations JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2001 SP - 151 EP - 162 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a3/ LA - ru ID - SJVM_2001_4_2_a3 ER -
E. V. Dulov; N. A. Andrianova. On a~numerical solution of matrix polynomial equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 2, pp. 151-162. http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a3/