Crank--Nicolson's scheme with different time-step in subdomains for the solution of parabolic problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 2, pp. 137-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of constructing difference schemes with different time-step in subdomains based on Crank–Nicolson's scheme is suggested. It is associated with interpolation of the solution on the boundary of subdomains. It is proved that the solution of the difference problem converges in uniform norm to that of differential problem with the order $O(\tau^2+h^2)$.
@article{SJVM_2001_4_2_a2,
     author = {V. I. Drobyshevich and L. N. Katkova},
     title = {Crank--Nicolson's scheme with different time-step in subdomains for the solution of parabolic problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {137--150},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a2/}
}
TY  - JOUR
AU  - V. I. Drobyshevich
AU  - L. N. Katkova
TI  - Crank--Nicolson's scheme with different time-step in subdomains for the solution of parabolic problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2001
SP  - 137
EP  - 150
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a2/
LA  - ru
ID  - SJVM_2001_4_2_a2
ER  - 
%0 Journal Article
%A V. I. Drobyshevich
%A L. N. Katkova
%T Crank--Nicolson's scheme with different time-step in subdomains for the solution of parabolic problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2001
%P 137-150
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a2/
%G ru
%F SJVM_2001_4_2_a2
V. I. Drobyshevich; L. N. Katkova. Crank--Nicolson's scheme with different time-step in subdomains for the solution of parabolic problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 2, pp. 137-150. http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a2/

[1] Matus P. P., “Ob odnom klasse raznostnykh skhem na sostavnykh setkakh dlya nestatsionarnykh zadach matematicheskoi fiziki”, Differents. uravneniya, 26:7 (1990), 1241–1254 | MR

[2] Drobyshevich V. I., Laevsky Yu. M., “An algorithm of solution of parabolic equations with different time-steps in subdomains”, Rus. J. Numer. Anal. Math. Model., 7:3 (1992), 205–220 | DOI | MR | Zbl

[3] Drobyshevich V. I., “Raznostnye skhemy s razlichnymi vremennymi shagami v podoblastyakh dlya resheniya mnogomernykh parabolicheskikh uravnenii”, Sib. matem. zhurn., 36:3 (1995), 534–542 | MR | Zbl

[4] Ewing R. E., Lazarov R. D., Pasciak J. E., Vassilevski P. S., Finite element methods for parabolic problems with time steps variable in space, Report / Univ. of Wyoming; 1989-05, 1989

[5] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl