On the polynomials, the least deviating from zero in $L[-1,1]$ metrics (Second part)
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 2, pp. 123-136

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of maximum polynomials, the least deviating from zero in integral metric whose forms are calculated in the first part [5] are studied. Theorem 2.2 contains the classification of polynomials, the least deviating from zero in $L[-1,1]$ metrics with given four leading coefficients.
@article{SJVM_2001_4_2_a1,
     author = {V. \`E. Gheit},
     title = {On the polynomials, the least deviating from zero in $L[-1,1]$ metrics {(Second} part)},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {123--136},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a1/}
}
TY  - JOUR
AU  - V. È. Gheit
TI  - On the polynomials, the least deviating from zero in $L[-1,1]$ metrics (Second part)
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2001
SP  - 123
EP  - 136
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a1/
LA  - ru
ID  - SJVM_2001_4_2_a1
ER  - 
%0 Journal Article
%A V. È. Gheit
%T On the polynomials, the least deviating from zero in $L[-1,1]$ metrics (Second part)
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2001
%P 123-136
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a1/
%G ru
%F SJVM_2001_4_2_a1
V. È. Gheit. On the polynomials, the least deviating from zero in $L[-1,1]$ metrics (Second part). Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 2, pp. 123-136. http://geodesic.mathdoc.fr/item/SJVM_2001_4_2_a1/