A~decomposition method for singularly perturbed parabolic convectiondiffusion equations with discontinuous initial conditions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 1, pp. 85-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

Grid approximations of the Cauchy one-dimensional problem for singularly perturbed parabolic equations are considered. The limit equation (with $\varepsilon=0$, where $\varepsilon$ is the perturbation parameter multiplying the highest derivative) contains the derivative with respect to the spatial variable (convective term). The initial condition has a discontinuity of the first kind. The solution of this problem has singularities in a neighbourhood of the discontinuity for fixed values of the parameter $\varepsilon$, and also a transient layer for small values of $\varepsilon$. We construct special finite difference schemes which $\varepsilon$ uniformly converge on the whole domain. For this we use the domain and solution decomposition technique. The singular solution, generated by the discontinuity of the initial function, is split off and represented in the explicit form in the nearest neighbourhood of the discontinuity. In the neighbourhood of the transient layer, we employ the meshes condensing by a special way.
@article{SJVM_2001_4_1_a7,
     author = {G. I. Shishkin},
     title = {A~decomposition method for singularly perturbed parabolic convectiondiffusion equations with discontinuous initial conditions},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {85--106},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_1_a7/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - A~decomposition method for singularly perturbed parabolic convectiondiffusion equations with discontinuous initial conditions
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2001
SP  - 85
EP  - 106
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2001_4_1_a7/
LA  - ru
ID  - SJVM_2001_4_1_a7
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T A~decomposition method for singularly perturbed parabolic convectiondiffusion equations with discontinuous initial conditions
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2001
%P 85-106
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2001_4_1_a7/
%G ru
%F SJVM_2001_4_1_a7
G. I. Shishkin. A~decomposition method for singularly perturbed parabolic convectiondiffusion equations with discontinuous initial conditions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 1, pp. 85-106. http://geodesic.mathdoc.fr/item/SJVM_2001_4_1_a7/

[1] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zhurn. vychisl. matem. i mat. fiz., 9:4 (1969), 841–859 | Zbl

[2] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Mat. zametki, 6:2 (1969), 237–248

[3] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR

[4] Liseikin V. D., Petrenko V. E., Adaptivno-invariantnyi metod chislennogo resheniya zadach s pogranichnymi i vnutrennimi sloyami, VTs SO AN SSSR, Novosibirsk, 1989 | MR

[5] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[6] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems, World Scientific, Singapore, 1996 | MR

[7] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[8] Bagaev B. M., Shaidurov V. V., “Variatsionno-raznostnoe reshenie uravneniya s malym parametrom”, Metody vychislitelnoi i prikladnoi matematiki, Novosibirsk, 1977, 89–99 | Zbl

[9] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[10] Shishkin G. I., “Raznostnaya skhema dlya singulyarno vozmuschennogo uravneniya parabolicheskogo tipa s razryvnym granichnym usloviem”, Zhurn. vychisl. matem. i mat. fiz., 28:11 (1988), 1649–1662 | MR

[11] Shishkin G. I., “Raznostnaya skhema dlya singulyarno vozmuschennogo uravneniya parabolicheskogo tipa s razryvnym nachalnym usloviem”, DAN SSSR, 300:5 (1988), 1066–1070 | Zbl

[12] Hemker P. W., Shishkin G. I., “Discrete approximation of singularly perturbed parabolic PDEs with a discontinuous initial conditions”, J. Computational Fluid Dynamics, 2:4 (1994), 375–392

[13] Hemker P. W., Shishkin G. I., “Approximation of parabolic PDEs with a discontinuous initial conditions”, East-West J. of Numer. Mathematics, 1:4 (1993), 287–302 | MR | Zbl

[14] Shishkin G. I., “A decomposition method for singularly perturbed reaction-diffusion equations with discontinuous boundary conditions”, Proceedings of the Second International Conference “Finite-Difference Methods: Theory and Application”, v. 3, Minsk, 1998, 77–84 | MR