Generalized functionally invariant solutions for equations of the elasticity theory
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 1, pp. 41-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the first time, necessary and sufficient conditions of the existence of generalized functionally invariant decisions for the equation of elasticity theory are received. The investigation of these conditions is conducted, and decisions are built in a class of flat and spherical waves for longitudinal and diametrical oscillations.
@article{SJVM_2001_4_1_a4,
     author = {\'E. V. Nikol'skii},
     title = {Generalized functionally invariant solutions for equations of the elasticity theory},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {41--50},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2001_4_1_a4/}
}
TY  - JOUR
AU  - É. V. Nikol'skii
TI  - Generalized functionally invariant solutions for equations of the elasticity theory
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2001
SP  - 41
EP  - 50
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2001_4_1_a4/
LA  - ru
ID  - SJVM_2001_4_1_a4
ER  - 
%0 Journal Article
%A É. V. Nikol'skii
%T Generalized functionally invariant solutions for equations of the elasticity theory
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2001
%P 41-50
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2001_4_1_a4/
%G ru
%F SJVM_2001_4_1_a4
É. V. Nikol'skii. Generalized functionally invariant solutions for equations of the elasticity theory. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 4 (2001) no. 1, pp. 41-50. http://geodesic.mathdoc.fr/item/SJVM_2001_4_1_a4/

[1] Alekseev A. S., Gelchinskii B. Ya., “O luchevom metode vychisleniya polei voln v sluchae neodnorodnykh sred s krivolineinymi granitsami razdela”, Voprosy dinamicheskoi teorii rasprostraneniya seismicheskikh voln, Sb. III, LGU, L., 1959, 107–160

[2] Nikolskii E. V., Obobschennye funktsionalno-invariantnye resheniya uravnenii matematicheskoi fiziki, Izd-vo Novosibirskogo Universiteta, Novosibirsk, 1995

[3] Nikolskii E. V., Obobschennye funktsionalno-invariantnye resheniya i ekvivalentnye sistemy uravnenii matematicheskoi fiziki, Nauka, Novosibirsk, 1997 | MR

[4] Petrashen G. I., “Elementy dinamicheskoi teorii rasprostraneniya seismicheskikh voln”, Voprosy dinamicheskoi teorii rasprostraneniya seismicheskikh voln, Sb. III, LGU, L., 1959, 11–106