On convergence of finite dimensional approximations of $L$-regularized solutions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 4, pp. 395-403
Cet article a éte moissonné depuis la source Math-Net.Ru
Necessary and sufficient conditions for convergence of finite dimensional approximations of $L$-regularized solutions are obtained.
@article{SJVM_2000_3_4_a9,
author = {V. P. Tanana and A. A. Shtarkman},
title = {On convergence of finite dimensional approximations of $L$-regularized solutions},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {395--403},
year = {2000},
volume = {3},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_4_a9/}
}
TY - JOUR AU - V. P. Tanana AU - A. A. Shtarkman TI - On convergence of finite dimensional approximations of $L$-regularized solutions JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2000 SP - 395 EP - 403 VL - 3 IS - 4 UR - http://geodesic.mathdoc.fr/item/SJVM_2000_3_4_a9/ LA - ru ID - SJVM_2000_3_4_a9 ER -
V. P. Tanana; A. A. Shtarkman. On convergence of finite dimensional approximations of $L$-regularized solutions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 4, pp. 395-403. http://geodesic.mathdoc.fr/item/SJVM_2000_3_4_a9/
[1] Tikhonov A. N., “O regulyarizatsii nekorrektno postavlennykh zadach”, Dokl. AN SSSR, 153:1 (1963), 49–52 | MR | Zbl
[2] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1981 | MR
[3] Menikhes L. D., Tanana V. P., “A convergense for approximation in the regularization method and the Tikhonov regularization method of $n$-th order”, J. Inv. Ill-Posed Problems, 6:3 (1998), 241–262 | MR
[4] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s apriornoi informatsiei, Nauka, Ekaterinburg, 1993 | MR
[5] Kato T., Perturbation theory for linear operators, Springer-Verlag, New-York, 1966 | MR