Autowave emergence conditions for a~Cellular Neural Network
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 4, pp. 377-394.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a formal substantiation of a parameter choice for the Cellular Neural Network, which generates autowave processes like traveling round front and traveling round pulse, is presented on the base of the investigation of neuron pair phase plane properties. Required conditions determining the value of pointlike autowave source are given for two types of the CNN – with one and two stable equilibrium points on the phase plane of neuron pair. Simulating results of the autowaves in the CNN with the parameters determined correspondingly to the substantiation are also presented.
@article{SJVM_2000_3_4_a8,
     author = {A. V. Selikhov},
     title = {Autowave emergence conditions for {a~Cellular} {Neural} {Network}},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {377--394},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_4_a8/}
}
TY  - JOUR
AU  - A. V. Selikhov
TI  - Autowave emergence conditions for a~Cellular Neural Network
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2000
SP  - 377
EP  - 394
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2000_3_4_a8/
LA  - ru
ID  - SJVM_2000_3_4_a8
ER  - 
%0 Journal Article
%A A. V. Selikhov
%T Autowave emergence conditions for a~Cellular Neural Network
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2000
%P 377-394
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2000_3_4_a8/
%G ru
%F SJVM_2000_3_4_a8
A. V. Selikhov. Autowave emergence conditions for a~Cellular Neural Network. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 4, pp. 377-394. http://geodesic.mathdoc.fr/item/SJVM_2000_3_4_a8/

[1] Vasilev V. A., Romanovskii Yu. M., Yakhno V. G., Avtovolnovye protsessy, Sovrem. probl. fiziki, ed. D. S. Chernyavskii, Nauka. Gl. red. fiz-mat. lit., M., 1987

[2] Chua L. O., Yang L., “Cellular Neural Networks: theory and applications”, IEEE Transactions on Circuits and Systems, 35 (1988), 1257–1290 | DOI | MR

[3] Munuzuri A. P., Perez-Munuzuri V., Gomez-Gesteira M., Chua L. O., Perez-Villar V., “Spatiotemporal structures in discretely-coupled arrays of nonlinear circuits: a review”, Int. J. of Bifurcation and Chaos, 5:1 (1995), 17–50 | DOI | Zbl

[4] Aerna P., Baglio S., Fortuna L., Manganaro G., “Self-organization in a two-layer CNN”, Part I, IEEE Trans. on Circuits and Systems, 45:2 (Feb., 1998), 157–163 | DOI

[5] Zou F., Nossek J. A., “Bifurcation and chaos in Cellular Neural Networks”, Part I, IEEE Trans. on Circuits and Systems, 40 (1993), 166–173 | DOI | MR | Zbl

[6] Thiran P., Crounse K. R., Setti G., “Analytical approach to pattern formation in arrays of coupled systems”, International Symp. on Nonlinear Theory and its Applications (NOLTA95) (Las Vegas, USA, 10–14 Dec., 1995), 465–470

[7] Yakhno V. G., Avtovolnovaya dinamika odnorodnykh neiropodobnykh sistem, Avtoref. diss. $\dots$ dokt. fiz.-matem. nauk, Nizhnii Novgorod, 1999

[8] Chua L. O., Desoer C. A., Kuh E. S., Linear and NonLinear Circuits, McGraw-Hill Int., 1987 | Zbl

[9] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Nauka. Gl. red. fiz-mat. lit., M., 1981 | MR | Zbl

[10] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966 | MR | Zbl

[11] Selikhov A., “Emergence and Propagation of round autowave in Cellular Neural Network”, Proc. of Fifth Int. Conference PaCT-99, Springer Verlag, 1999, 120–133

[12] Roska T., Chua L. O., “The CNN universal machine: an analogic array computer”, Part II, IEEE Trans. on Circuits and Systems, 40:3 (1993), 163–173 | DOI | Zbl