Hamilton form of the Jacobi matrices
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 2, pp. 159-164
Cet article a éte moissonné depuis la source Math-Net.Ru
The algorithm of congruent transformation of the positive definite (semi-definite) Jacobi matrix to the form, in which the sum of inner row elements equals to zero, is presented. The definition domain of the parameter of such (not unique) transformation is defined.
@article{SJVM_2000_3_2_a6,
author = {Yu. I. Kuznetsov},
title = {Hamilton form of the {Jacobi} matrices},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {159--164},
year = {2000},
volume = {3},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a6/}
}
Yu. I. Kuznetsov. Hamilton form of the Jacobi matrices. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 2, pp. 159-164. http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a6/
[1] Gantmakher F. R., Krein M. G., Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, GITL, M., L., 1950
[2] Ilin V. P., Kuznetsov Yu. I., Trekhdiagonalnye matritsy i ikh prilozheniya, Nauka, M., 1985 | MR
[3] Ilin V. P., Kuznetsov Yu. I., “O nekotorykh svoistvakh yakobievykh matrits i ikh prilozheniyakh”, Chislennye metody mekhaniki sploshnoi sredy / RAN Sib. otd-nie. — Novosibirsk, 3:5 (1972), 40–50 | MR
[4] Kuznetsov Yu. I., Koscheeva I. V., “Vosstanovlenie trekhdiagonalnoi matritsy”, Zhurn. vychisl. matem. i mat. fiziki, 10 (1987), 1575–1577
[5] Serdyukova S. I., Obratnaya zadacha dlya simmetrichnykh trekhdiagonalnykh matrits, Preprint / OIYaI; p11-92-434, Dubna, 1992 | MR | Zbl