Implicit scheme on different time meshes for semilinear parabolic equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 2, pp. 151-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of the construction of difference schemes with different time-step in the subdomains is suggested. It is associated with the interpolation of a solution on a boundary of subdomains. In the case of a semilinear parabolic equation, it is proved that the solution of difference problem converges to that of a differential problem with the order $O(\tau)$.
@article{SJVM_2000_3_2_a5,
     author = {V. I. Drobyshevich},
     title = {Implicit scheme on different time meshes for semilinear parabolic equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {151--158},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a5/}
}
TY  - JOUR
AU  - V. I. Drobyshevich
TI  - Implicit scheme on different time meshes for semilinear parabolic equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2000
SP  - 151
EP  - 158
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a5/
LA  - ru
ID  - SJVM_2000_3_2_a5
ER  - 
%0 Journal Article
%A V. I. Drobyshevich
%T Implicit scheme on different time meshes for semilinear parabolic equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2000
%P 151-158
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a5/
%G ru
%F SJVM_2000_3_2_a5
V. I. Drobyshevich. Implicit scheme on different time meshes for semilinear parabolic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 2, pp. 151-158. http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a5/

[1] Matus P. P., “Ob odnom klasse raznostnykh skhem na sostavnykh setkakh dlya nestatsionarnykh zadach matematicheskoi fiziki”, Diff. uravn., 26:7 (1990), 1241–1254 | MR

[2] Drobyshevich V. I., Laevsky Yu. M., “An algoritm of solution of parabolic equations with different time-steps in subdomains”, Russ. J. Numer. Anal. and Math. Model., 7:3 (1992), 205–220 | DOI | MR | Zbl

[3] Matus P. P., “K voprosu postroeniya raznostnykh skhem dlya mnogomernykh parabolicheskikh uravnenii na adaptivno-vremennykh setkakh”, Diff. uravn., 27:11 (1991), 1964–1974 | MR

[4] Matus P. P., “Konservativnye raznostnye skhemy dlya parabolicheskikh i giperbolicheskikh uravnenii vtorogo poryadka v podoblastyakh”, Diff. uravn., 29:4 (1993), 700–710 | MR | Zbl

[5] Drobyshevich V. I., “Difference schemes with different time-steps in subdomains for solving parabolic equations”, Russ. J. Numer. Anal. and Math. Model., 9:5 (1994), 429–444 | DOI | MR | Zbl

[6] Drobyshevich V. I., “Neyavnyi i yavno-neyavnyi algoritmy s razlichnymi vremennymi shagami v podoblastyakh”, Sibirskii mat. zhurn., 3 (1995), 534–542 | MR | Zbl

[7] Matus P. P., “Konservativnye raznostnye skhemy dlya kvazilineinykh parabolicheskikh uravnenii v podoblastyakh”, Diff. uravn., 29:7 (1993), 1222–1231 | MR | Zbl

[8] Vabischevich P. N., Matus P. P., Scheglik B. C., “Operatorno-raznostnye uravneniya divergentnogo tipa”, Diff. uravn., 30:7 (1994), 1175–1186 | MR

[9] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[10] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl