Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2000_3_2_a4, author = {E. V. Goruynov and Kh. Kh. Imomnazarov}, title = {Numerical solution of combined one-dimensional inverse problems for {Maxwell's} equation and equations of porous media}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {137--149}, publisher = {mathdoc}, volume = {3}, number = {2}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a4/} }
TY - JOUR AU - E. V. Goruynov AU - Kh. Kh. Imomnazarov TI - Numerical solution of combined one-dimensional inverse problems for Maxwell's equation and equations of porous media JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2000 SP - 137 EP - 149 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a4/ LA - ru ID - SJVM_2000_3_2_a4 ER -
%0 Journal Article %A E. V. Goruynov %A Kh. Kh. Imomnazarov %T Numerical solution of combined one-dimensional inverse problems for Maxwell's equation and equations of porous media %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2000 %P 137-149 %V 3 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a4/ %G ru %F SJVM_2000_3_2_a4
E. V. Goruynov; Kh. Kh. Imomnazarov. Numerical solution of combined one-dimensional inverse problems for Maxwell's equation and equations of porous media. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 2, pp. 137-149. http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a4/
[1] Imomnazarov Kh. Kh., “Ob odnom klasse sovmeschennykh odnomernykh obratnykh zadach dlya uravneniya Maksvella i uravneniya kontinualnoi teorii filtratsii”, Tr. IVMiMG SO RAN. Ser. Mat. modelirovanie v geofizike, 5, Novosibirsk, 1998, 61–73
[2] Imomnazarov Kh. Kh., “Edinstvennost odnoi sovmeschennoi odnomernoi obratnoi zadachi dlya uravneniya Maksvella i uravneniya kontinualnoi teorii filtratsii”, Tezisy Mezhdunarodnoi konferentsii “Vyrozhdayuschiesya uravneniya i uravneniya sostavnogo tipa” (Fergana, 1998), 40–41
[3] Imomnazarov Kh. Kh., “Combined one-dimensional inverse problems for Maxwell's equations and an equation of the continual filtration theory”, Appl. Math. Lett., 12:2 (1999), 45–49 | DOI | MR | Zbl
[4] Imomnazarov Kh. Kh., “Uniqueness of the solution to combined one-dimensional inverse problems for Maxwell's equations and equations of porous media”, Comp. Appl. Math., 19:3 (2000) (to appear) | MR | Zbl
[5] Dorovsky V. N., Imomnazarov Kh. Kh., “A mathematical model for the movement of a conducting liquid through a conducting porous medium”, Math. Comput. Modelling, 20:7 (1994), 91–97 | DOI | MR | Zbl
[6] Imomnazarov Kh. Kh., “Archie's law for a mathematical model of movement of a conducting liquid through a conducting porous medium”, Appl. Math. Lett., 11:6 (1998), 135–138 | DOI | MR | Zbl
[7] Jackson P. D., Taylor-Smith D., Stanford P. N., “Resistivity-porosity-particle shape relationships for marine sands”, Geophysics, 43:6 (1978), 1250–1268 | DOI
[8] Alekseev A. S., Avdeev A. V., Cheverda V. A., Fatianov A. G., “Wave processes in vertically inhogeneous media: a new strategy for a velocity inversion”, Inverse Problems, 9:3 (1993), 367–390 | DOI | MR | Zbl
[9] Avdeev A. V., Goryunov E. V., Priimenko V. I., “Chislennoe reshenie obratnoi zadachi elektromagnitouprugosti”, Matematicheskoe modelirovanie, 9:10 (1997), 54–66
[10] Imomnazarov Kh. Kh., Matematicheskie modeli nelineinykh geofizicheskikh protsessov v poristykh elektroprovodyaschikh sredakh, Dis. $\dots$ kand. fiz.-mat. nauk: 05.13.16, VTs SO RAN, Novosibirsk, 1995