Numerical solution of combined one-dimensional inverse problems for Maxwell's equation and equations of porous media
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 2, pp. 137-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

Combined one-dimensional inverse problems for Maxwell's equation and equations of porous media are solved numerically using the optimization approach. Representative series of numerical calculations for various models of media are given.
@article{SJVM_2000_3_2_a4,
     author = {E. V. Goruynov and Kh. Kh. Imomnazarov},
     title = {Numerical solution of combined one-dimensional inverse problems for {Maxwell's} equation and equations of porous media},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {137--149},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a4/}
}
TY  - JOUR
AU  - E. V. Goruynov
AU  - Kh. Kh. Imomnazarov
TI  - Numerical solution of combined one-dimensional inverse problems for Maxwell's equation and equations of porous media
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2000
SP  - 137
EP  - 149
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a4/
LA  - ru
ID  - SJVM_2000_3_2_a4
ER  - 
%0 Journal Article
%A E. V. Goruynov
%A Kh. Kh. Imomnazarov
%T Numerical solution of combined one-dimensional inverse problems for Maxwell's equation and equations of porous media
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2000
%P 137-149
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a4/
%G ru
%F SJVM_2000_3_2_a4
E. V. Goruynov; Kh. Kh. Imomnazarov. Numerical solution of combined one-dimensional inverse problems for Maxwell's equation and equations of porous media. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 2, pp. 137-149. http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a4/

[1] Imomnazarov Kh. Kh., “Ob odnom klasse sovmeschennykh odnomernykh obratnykh zadach dlya uravneniya Maksvella i uravneniya kontinualnoi teorii filtratsii”, Tr. IVMiMG SO RAN. Ser. Mat. modelirovanie v geofizike, 5, Novosibirsk, 1998, 61–73

[2] Imomnazarov Kh. Kh., “Edinstvennost odnoi sovmeschennoi odnomernoi obratnoi zadachi dlya uravneniya Maksvella i uravneniya kontinualnoi teorii filtratsii”, Tezisy Mezhdunarodnoi konferentsii “Vyrozhdayuschiesya uravneniya i uravneniya sostavnogo tipa” (Fergana, 1998), 40–41

[3] Imomnazarov Kh. Kh., “Combined one-dimensional inverse problems for Maxwell's equations and an equation of the continual filtration theory”, Appl. Math. Lett., 12:2 (1999), 45–49 | DOI | MR | Zbl

[4] Imomnazarov Kh. Kh., “Uniqueness of the solution to combined one-dimensional inverse problems for Maxwell's equations and equations of porous media”, Comp. Appl. Math., 19:3 (2000) (to appear) | MR | Zbl

[5] Dorovsky V. N., Imomnazarov Kh. Kh., “A mathematical model for the movement of a conducting liquid through a conducting porous medium”, Math. Comput. Modelling, 20:7 (1994), 91–97 | DOI | MR | Zbl

[6] Imomnazarov Kh. Kh., “Archie's law for a mathematical model of movement of a conducting liquid through a conducting porous medium”, Appl. Math. Lett., 11:6 (1998), 135–138 | DOI | MR | Zbl

[7] Jackson P. D., Taylor-Smith D., Stanford P. N., “Resistivity-porosity-particle shape relationships for marine sands”, Geophysics, 43:6 (1978), 1250–1268 | DOI

[8] Alekseev A. S., Avdeev A. V., Cheverda V. A., Fatianov A. G., “Wave processes in vertically inhogeneous media: a new strategy for a velocity inversion”, Inverse Problems, 9:3 (1993), 367–390 | DOI | MR | Zbl

[9] Avdeev A. V., Goryunov E. V., Priimenko V. I., “Chislennoe reshenie obratnoi zadachi elektromagnitouprugosti”, Matematicheskoe modelirovanie, 9:10 (1997), 54–66

[10] Imomnazarov Kh. Kh., Matematicheskie modeli nelineinykh geofizicheskikh protsessov v poristykh elektroprovodyaschikh sredakh, Dis. $\dots$ kand. fiz.-mat. nauk: 05.13.16, VTs SO RAN, Novosibirsk, 1995