Justification of asymptotic stability of the triangulation algorithm for a~three-dimensional domain
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 2, pp. 123-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm of triangulation construction (the subdivision into tetrahedrons) for a three-dimensional bounded domain with a smooth curvilinear boundary is considered. The algorithm starts on a given coarsest triangulation. The consequent finer triangulations are recurrently constructed by the subdivision of tetrahedrons of the previous level into 8 parts with correction of the location of vertices near the boundary to approximate the boundary. To evaluate the quality of a triangulation a certain quantitative criterion is used. It is proved that a successful (in the sense of this criterion) initial triangulation moderately detailed guarantees good quality of the consequent finer triangulations under arbitrary number of recurrent implementations of subdivision algorithm.
@article{SJVM_2000_3_2_a3,
     author = {L. V. Gilyova and V. V. Shaidurov},
     title = {Justification of asymptotic stability of the triangulation algorithm for a~three-dimensional domain},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {123--136},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a3/}
}
TY  - JOUR
AU  - L. V. Gilyova
AU  - V. V. Shaidurov
TI  - Justification of asymptotic stability of the triangulation algorithm for a~three-dimensional domain
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2000
SP  - 123
EP  - 136
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a3/
LA  - ru
ID  - SJVM_2000_3_2_a3
ER  - 
%0 Journal Article
%A L. V. Gilyova
%A V. V. Shaidurov
%T Justification of asymptotic stability of the triangulation algorithm for a~three-dimensional domain
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2000
%P 123-136
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a3/
%G ru
%F SJVM_2000_3_2_a3
L. V. Gilyova; V. V. Shaidurov. Justification of asymptotic stability of the triangulation algorithm for a~three-dimensional domain. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 2, pp. 123-136. http://geodesic.mathdoc.fr/item/SJVM_2000_3_2_a3/

[1] Shaidurov V. V., Mnogosetochnye metody konechnykh elementov, Nauka, M., 1989 | MR

[2] Shaidurov V. V., “Cascadic algorithm with the nested subspaces in domains with curvilinear boundary”, Advanced Mathematics: Computations and Applications, eds. A. S. Alekseev and N. S. Bakhvalov, NCC Publisher, Novosibirsk, 1995, 588–595 | MR

[3] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[4] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[5] Gaevskii, Zakharias L. Greger K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[6] Gileva L. V., “Kaskadnyi mnogosetochnyi algoritm v metode konechnykh elementov dlya trekhmernoi zadachi Dirikhle”, Sib. zhurn. vychisl. matematiki. — Novosibirsk, 1:3 (1998), 217–226 | MR

[7] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Izd. 5-e, Nauka, M., 1984 | MR