Error bounds of two-sided approximations for the Sturm--Liouville problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 1, pp. 73-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the investigation of two-side approximations method for eigenvalue problem based on the well-known fictitious method is pursued. The expansion of eigenvalues of auxiliary problem in power series by small parameter of continuation irrespective of its sign is proved. Unimprovable error bounds of two-sided approximations are obtained. The conjugate-factorized structure of the problem operator plays the decisive role in obtaining the result. The research is realized on descrete level.
@article{SJVM_2000_3_1_a4,
     author = {S. B. Sorokin},
     title = {Error bounds of two-sided approximations for the {Sturm--Liouville} problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {73--88},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a4/}
}
TY  - JOUR
AU  - S. B. Sorokin
TI  - Error bounds of two-sided approximations for the Sturm--Liouville problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2000
SP  - 73
EP  - 88
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a4/
LA  - ru
ID  - SJVM_2000_3_1_a4
ER  - 
%0 Journal Article
%A S. B. Sorokin
%T Error bounds of two-sided approximations for the Sturm--Liouville problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2000
%P 73-88
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a4/
%G ru
%F SJVM_2000_3_1_a4
S. B. Sorokin. Error bounds of two-sided approximations for the Sturm--Liouville problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 1, pp. 73-88. http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a4/

[1] Saulev V. K., “Ob odnom metode avtomatizatsii resheniya kraevykh zadach na bystrodeistvuyuschikh vychislitelnykh mashinakh”, Dokl. AN SSSR, 144:3 (1962), 497–500 | MR

[2] Konovalov A. N., “Metod fiktivnykh oblastei v zadachakh filtratsii dvukhfaznoi neszhimaemoi zhidkosti s uchetom kapillyarnykh sil”, Chislennye metody mekhaniki sploshnoi sredy. (Sb. nauchn. trudov) / RAN. Sib. otd-nie VTs. — Novosibirsk, 3:5 (1972), 52–68 | MR

[3] Bugrov A. N., “Metod fiktivnykh oblastei dlya uravnenii s chastnymi proizvodnymi ellipticheskogo tipa”, Materialy V Vsesoyuznoi konferentsii “Chislennye metody resheniya zadach teorii uprugosti i plastichnosti”, v. II, Novosibirsk, 1978, 24–35 | Zbl

[4] Nikolaeva N. I., “Metod fiktivnykh oblastei dlya zadach na sobstvennye znacheniya”, Chislennye metody mekhaniki sploshnoi sredy. — Novosibirsk, 10:6 (1979), 105–112 | MR

[5] Konyukh G. V., “Dvustoronnie otsenki dlya resheniya setochnykh zadach”, Variatsionno-raznostnye metody v zadachakh chislennogo analiza, Sb. nauchn. trudov, Novosibirsk, 1988, 163–171 | MR

[6] Chertova K. A., “Locally two-sided approximate solutions in parabolic problems”, Bull. NCC. Numer. Anal., 6 (1994), 37–42

[7] Nikiforovskii SV., Sorokin SB., “Dvustoronnie priblizheniya dlya sobstvennykh chisel v metode fiktivnykh oblastei”, Chislennye metody mekhaniki sploshnoi sredy. — Novosibirsk, 17:5 (1986), 110–119

[8] Konovalov A. N., Sorokin S. B., Struktura uravnenii teorii uprugosti. Statika, Preprint / AN SSSR. Sib. otd-nie. VTs; 665, Novosibirsk, 1986 | MR

[9] Sorokin S. B., “Numerical solution of elliptic problems with factorized operators”, Bull. NCC. Numer. Anal., 5 (1994), 87–103 | Zbl

[10] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl

[11] Marchuk G. I., Agoshkov V. I., Shutyaev V. P., Sopryazhennye uravneniya i algoritmy vozmuschenii, AN SSSR, Otdel vychislitelnoi matematiki, M., 1986 | MR

[12] Konovalov A. N., “Sopryazhenno-faktorizovannye modeli v zadachakh matematicheskoi fiziki”, Sib. zhurn. vychisl. matematiki / RAN. Sib. otd-nie. — Novosibirsk, 1:1 (1998), 25–57 | MR