Modeling of boundary conditions for pressure by fictitious domain method in the incompressible flow problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 1, pp. 57-71

Voir la notice de l'article provenant de la source Math-Net.Ru

A new version of fictitious domain method, as applied to viscous incompressible flow problems in velocitypressure formulation, is considered. The Dirichlet boundary condition for pressure at the boundary of auxiliary domain is proposed. It allows to unify the computation models and to construct the computational economic algorithms.
@article{SJVM_2000_3_1_a3,
     author = {Sh. S. Smagulov and N. M. Temirbekov and K. S. Kamaubaev},
     title = {Modeling of boundary conditions for pressure by fictitious domain method in the incompressible flow problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {57--71},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a3/}
}
TY  - JOUR
AU  - Sh. S. Smagulov
AU  - N. M. Temirbekov
AU  - K. S. Kamaubaev
TI  - Modeling of boundary conditions for pressure by fictitious domain method in the incompressible flow problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2000
SP  - 57
EP  - 71
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a3/
LA  - ru
ID  - SJVM_2000_3_1_a3
ER  - 
%0 Journal Article
%A Sh. S. Smagulov
%A N. M. Temirbekov
%A K. S. Kamaubaev
%T Modeling of boundary conditions for pressure by fictitious domain method in the incompressible flow problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2000
%P 57-71
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a3/
%G ru
%F SJVM_2000_3_1_a3
Sh. S. Smagulov; N. M. Temirbekov; K. S. Kamaubaev. Modeling of boundary conditions for pressure by fictitious domain method in the incompressible flow problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 1, pp. 57-71. http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a3/