Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2000_3_1_a3, author = {Sh. S. Smagulov and N. M. Temirbekov and K. S. Kamaubaev}, title = {Modeling of boundary conditions for pressure by fictitious domain method in the incompressible flow problems}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {57--71}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a3/} }
TY - JOUR AU - Sh. S. Smagulov AU - N. M. Temirbekov AU - K. S. Kamaubaev TI - Modeling of boundary conditions for pressure by fictitious domain method in the incompressible flow problems JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2000 SP - 57 EP - 71 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a3/ LA - ru ID - SJVM_2000_3_1_a3 ER -
%0 Journal Article %A Sh. S. Smagulov %A N. M. Temirbekov %A K. S. Kamaubaev %T Modeling of boundary conditions for pressure by fictitious domain method in the incompressible flow problems %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2000 %P 57-71 %V 3 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a3/ %G ru %F SJVM_2000_3_1_a3
Sh. S. Smagulov; N. M. Temirbekov; K. S. Kamaubaev. Modeling of boundary conditions for pressure by fictitious domain method in the incompressible flow problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 1, pp. 57-71. http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a3/
[1] Vabischevich P. N., Metod fiktivnykh oblastei dlya zadachi matematicheskoi fiziki, Izd-vo MGU, M., 1991
[2] Konovalov A. N., Korobitsyna Zh. A., “Modelirovanie kraevykh uslovii v zadachakh filtratsii s pomoschyu metoda fiktivnykh oblastei”, Tr. III Vsesoyuzn. seminara “Chislennoe reshenie zadach filtratsii mnogofaznoi neszhimaemoi zhidkosti” (Novosibirsk, 1977), 115–120
[3] Bugrov A. N., Smagulov Sh. S., “Metod fiktivnykh oblastei v kraevykh zadachakh dlya uravneniya Nave–Stoksa”, Matematicheskie modeli techenii zhidkosti, AN SSSR. Sib. otd-nie. ITPM, Novosibirsk, 1978, 79–89
[4] Smagulov Sh. S., Metod fiktivnykh oblastei dlya kraevoi zadachi uravnenii Nave–Stoksa, Preprint / AN SSSR. Sib. otd-nie. VTs; 68, Novosibirsk, 1979
[5] Smagulov Sh. S., Orunkhanov M. K., “Priblizhennyi metod resheniya uravnenii gidrodinamiki v mnogosvyaznykh oblastyakh”, Dokl. AN SSSR, 260:5 (1981), 1078–1082 | MR | Zbl
[6] Bugrov A. N., Metod fiktivnykh oblastei v uravneniyakh otnositelno funktsii toka dlya vyazkoi neszhimaemoi zhidkosti, Preprint, AN SSSR. Sib. otd-nie. IM, Novosibirsk, 1977
[7] Belotserkovskii O. M., Chislennoe modelirovanie v mekhanike sploshnykh sred, Nauka, M., 1984 | MR
[8] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR
[9] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983 | Zbl
[10] Sakhaev Sh., “Otsenka resheniya odnoi neopredelennoi parabolicheskoi nachalno-kraevoi zadachi”, Tr. MIAN SSSR, 127, 1975, 58–75 | Zbl
[11] Ragulin A., “K zadache o protekanii vyazkoi zhidkosti skvoz ogranichennuyu oblast pri zadannom perepade davleniya ili napora”, Dinamika neodnorodnoi zhidkosti, AN SSSR. Sib. otd-nie. Institut gidrodinamiki, Novosibirsk, 1976, 78–92 | MR