Modeling of boundary conditions for pressure by fictitious domain method in the incompressible flow problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 1, pp. 57-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new version of fictitious domain method, as applied to viscous incompressible flow problems in velocitypressure formulation, is considered. The Dirichlet boundary condition for pressure at the boundary of auxiliary domain is proposed. It allows to unify the computation models and to construct the computational economic algorithms.
@article{SJVM_2000_3_1_a3,
     author = {Sh. S. Smagulov and N. M. Temirbekov and K. S. Kamaubaev},
     title = {Modeling of boundary conditions for pressure by fictitious domain method in the incompressible flow problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {57--71},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a3/}
}
TY  - JOUR
AU  - Sh. S. Smagulov
AU  - N. M. Temirbekov
AU  - K. S. Kamaubaev
TI  - Modeling of boundary conditions for pressure by fictitious domain method in the incompressible flow problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2000
SP  - 57
EP  - 71
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a3/
LA  - ru
ID  - SJVM_2000_3_1_a3
ER  - 
%0 Journal Article
%A Sh. S. Smagulov
%A N. M. Temirbekov
%A K. S. Kamaubaev
%T Modeling of boundary conditions for pressure by fictitious domain method in the incompressible flow problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2000
%P 57-71
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a3/
%G ru
%F SJVM_2000_3_1_a3
Sh. S. Smagulov; N. M. Temirbekov; K. S. Kamaubaev. Modeling of boundary conditions for pressure by fictitious domain method in the incompressible flow problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 1, pp. 57-71. http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a3/

[1] Vabischevich P. N., Metod fiktivnykh oblastei dlya zadachi matematicheskoi fiziki, Izd-vo MGU, M., 1991

[2] Konovalov A. N., Korobitsyna Zh. A., “Modelirovanie kraevykh uslovii v zadachakh filtratsii s pomoschyu metoda fiktivnykh oblastei”, Tr. III Vsesoyuzn. seminara “Chislennoe reshenie zadach filtratsii mnogofaznoi neszhimaemoi zhidkosti” (Novosibirsk, 1977), 115–120

[3] Bugrov A. N., Smagulov Sh. S., “Metod fiktivnykh oblastei v kraevykh zadachakh dlya uravneniya Nave–Stoksa”, Matematicheskie modeli techenii zhidkosti, AN SSSR. Sib. otd-nie. ITPM, Novosibirsk, 1978, 79–89

[4] Smagulov Sh. S., Metod fiktivnykh oblastei dlya kraevoi zadachi uravnenii Nave–Stoksa, Preprint / AN SSSR. Sib. otd-nie. VTs; 68, Novosibirsk, 1979

[5] Smagulov Sh. S., Orunkhanov M. K., “Priblizhennyi metod resheniya uravnenii gidrodinamiki v mnogosvyaznykh oblastyakh”, Dokl. AN SSSR, 260:5 (1981), 1078–1082 | MR | Zbl

[6] Bugrov A. N., Metod fiktivnykh oblastei v uravneniyakh otnositelno funktsii toka dlya vyazkoi neszhimaemoi zhidkosti, Preprint, AN SSSR. Sib. otd-nie. IM, Novosibirsk, 1977

[7] Belotserkovskii O. M., Chislennoe modelirovanie v mekhanike sploshnykh sred, Nauka, M., 1984 | MR

[8] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[9] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983 | Zbl

[10] Sakhaev Sh., “Otsenka resheniya odnoi neopredelennoi parabolicheskoi nachalno-kraevoi zadachi”, Tr. MIAN SSSR, 127, 1975, 58–75 | Zbl

[11] Ragulin A., “K zadache o protekanii vyazkoi zhidkosti skvoz ogranichennuyu oblast pri zadannom perepade davleniya ili napora”, Dinamika neodnorodnoi zhidkosti, AN SSSR. Sib. otd-nie. Institut gidrodinamiki, Novosibirsk, 1976, 78–92 | MR