Numerical solution of nonlinear problems on deformation of elastic shells of revolution at eigenstates
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 1, pp. 43-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The quasi-static problems on axisymmetric deformation of shells of revolution made from an elastic material with consideration for its geometric nonlinearity are numerically solved. The special attention is given to the determination of eigenstates of shells appropriate to the non-trivial solution of a homogeneous rate problem. The Riks-Wempner approach is used wherein the parameter of the external load intensity is entered as unknown. The basic nonlinear problem in determination of eigenvalues and appropriate eigenvectors reduces to the linearized (generalized) problem in eigenvalues. The developed algorithm of solving problems on deformation of shells in the vicinity of eigenstates is approved for a problem on deformation of the longitudinally compressed simply supported circular cylindrical shell. Numerical solutions are compared with analytical ones. It has been found that the behaviour of solution of the problem in the vicinity of an eigenstate is sensitive to perturbations of geometric parameters of the shell due to the dense spectrum of eigenvalues.
@article{SJVM_2000_3_1_a2,
     author = {S. N. Korobeinikov},
     title = {Numerical solution of nonlinear problems on deformation of elastic shells of revolution at eigenstates},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {43--56},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a2/}
}
TY  - JOUR
AU  - S. N. Korobeinikov
TI  - Numerical solution of nonlinear problems on deformation of elastic shells of revolution at eigenstates
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2000
SP  - 43
EP  - 56
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a2/
LA  - ru
ID  - SJVM_2000_3_1_a2
ER  - 
%0 Journal Article
%A S. N. Korobeinikov
%T Numerical solution of nonlinear problems on deformation of elastic shells of revolution at eigenstates
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2000
%P 43-56
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a2/
%G ru
%F SJVM_2000_3_1_a2
S. N. Korobeinikov. Numerical solution of nonlinear problems on deformation of elastic shells of revolution at eigenstates. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 3 (2000) no. 1, pp. 43-56. http://geodesic.mathdoc.fr/item/SJVM_2000_3_1_a2/

[1] Grigolyuk E. I., Shalashilin V. I., Problemy nelineinogo deformirovaniya, Nauka, M., 1988 | MR | Zbl

[2] Hill R., “On uniqueness and stability in the theory of finite elastic strain”, J. Mech. Phys. Solids, 5:4 (1957), 229–241 ; “O edinstvennosti i ustoichivosti v teorii konechnykh uprugikh deformatsii”, Mekhanika (sb. perevodov), no. 3(49), 1958, 53–65 | DOI | MR | Zbl

[3] Khill R., “Bifurkatsiya i edinstvennost v nelineinoi mekhanike sploshnoi sredy”, Problemy mekhaniki sploshnoi sredy, Sb. nauch. tr., AN SSSR, M., 1961, 448–457

[4] Prager W., Einfuhrung in die Kontinuumsmechanik, Birkhäuser Verlag, Basel, 1961 ; Vvedenie v mekhaniku sploshnykh sred, Izd-vo inostr. lit., M., 1963 | MR | Zbl

[5] Sanders J. L., “Nonlinear theories for thin shells”, Q. Appl. Math., 21:1 (1963), 21–36 | MR

[6] Volchkov Yu. M., Korobeinikov S. N., “Chislennoe reshenie uprugo-plasticheskikh zadach teorii obolochek”, Chislennye metody resheniya zadach teorii uprugosti i plastichnosti, Materialy 5-i Vsesoyuz. konf., chast 2, AN SSSR. Sib. otd-nie. In-t teoreticheskoi i prikladnoi mekhaniki, Novosibirsk, 1978, 40–47

[7] Volchkov Yu. M., Korobeinikov S.N., “Chislennoe opredelenie predelnykh i bifurkatsionnykh nagruzok uprugoplasticheskikh obolochek vrascheniya”, Dinamika sploshnoi sredy, 45, AN SSSR. Sib. otd-nie. In-t gidrodinamiki, Novosibirsk, 1980, 58–78, (Sb. nauch. tr.)

[8] Volchkov Yu.M., Korobeinikov S.N., “Otsenka predelnoi nagruzki uprugo-plasticheskikh obolochek vrascheniya”, PMTF, 4 (1981), 146–150

[9] Stephens W. B., Computer program for static and dynamic axisymmetric nonlinear response of symmetrically loaded orthotropic shell of revolution, Report / NASA; TN D-6158, 1970

[10] Burago N. G., Kukudzhanov V. N., “Chislennyi metod resheniya geometricheski nelineinykh osesimmetrichnykh zadach dlya uprugoplasticheskikh obolochek vrascheniya”, Stroitelnaya mekhanika i raschet sooruzhenii, 1976, no. 5, 44–49

[11] Bushnell D., “Effect of cold bending and welding on buckling of ring-stiffened cylinders”, Computers Structures, 12 (1980), 291–307 | DOI | Zbl

[12] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., L., 1963 | MR | Zbl

[13] Kabanov V. V., “Vliyanie kraevogo effekta na prochnost i ustoichivost konstruktivno- anizotropnoi krugovoi tsilindricheskoi obolochki pri szhatii, vnutrennem davlenii i nagreve”, Izv. vyssh. uchebn. zavedenii, Aviatsionnaya tekhnika, 1966, no. 1, 54–62

[14] Karmishin A. V., Lyaskovets V. A., Myachenkov V. I., Frolov A. N., Statika i dinamika tonkostennykh obolochechnykh konstruktsii, Mashinostroenie, M., 1975

[15] Keller J. B., Antman S., Bifurcation Theory and Nonlinear Eigenvalue Problems, Benjamin, New York, 1969 ; Teoriya vetvleniya i nelineinye zadachi na sobstvennye znacheniya, Mir, M., 1974 | MR | Zbl | Zbl

[16] Kornev V. M., “Ob approksimatsii v zadachakh ustoichivosti i kolebanii uprugikh obolochek pri sguschenii sobstvennykh znachenii”, Izv. AN SSSR, MTT, 1972, no. 2, 119–129

[17] Kornev V. M., Korobeinikov S. N., “O realizuemosti simmetrii resheniya v zadache osesimmetrichnogo deformirovaniya tsilindricheskoi obolochki pri prodolnom szhatii”, Analiticheskie i chislennye metody resheniya kraevykh zadach plastichnosti i vyazkouprugosti, UNTs AN SSSR, Sverdlovsk, 1986, 70–77