The improved boundary conditions at the singular points of coordinate systems for non-stationary boundary value problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 4, pp. 373-384.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, two types of non-stationary boundary value problems in polar, cylindrical and spherical coordinates are considered. These are symmetric problems whose initial data do not depend on angle variables and whatever problems. The difference fourth-order accuracy boundary conditions in poles of coordinate systems are constructed for their application in high-order schemes. The conditions represent special difference analogues of the differential equation in the Cartesian coordinates noted in poles. The modes of realization of boundary conditions in high-order schemes based on a method of an approximate factorization are developed.
@article{SJVM_1999_2_4_a6,
     author = {V. I. Paasonen},
     title = {The improved boundary conditions at the singular points of coordinate systems for non-stationary boundary value problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {373--384},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1999_2_4_a6/}
}
TY  - JOUR
AU  - V. I. Paasonen
TI  - The improved boundary conditions at the singular points of coordinate systems for non-stationary boundary value problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1999
SP  - 373
EP  - 384
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1999_2_4_a6/
LA  - ru
ID  - SJVM_1999_2_4_a6
ER  - 
%0 Journal Article
%A V. I. Paasonen
%T The improved boundary conditions at the singular points of coordinate systems for non-stationary boundary value problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1999
%P 373-384
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1999_2_4_a6/
%G ru
%F SJVM_1999_2_4_a6
V. I. Paasonen. The improved boundary conditions at the singular points of coordinate systems for non-stationary boundary value problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 4, pp. 373-384. http://geodesic.mathdoc.fr/item/SJVM_1999_2_4_a6/

[1] Paasonen V. I., “Obobschenie metodov povyshennoi tochnosti dlya nelineinykh uravnenii 2-go poryadka v ortogonalnykh sistemakh koordinat”, Chislennye metody mekhaniki sploshnoi sredy. — Novosibirsk, 8:2 (1977), 94–99

[2] Paasonen V. I., “Kompaktnye skhemy dlya sistem uravnenii vtorogo poryadka s konvektivnymi chlenami”, Vychislitelnye tekhnologii, 3:1 (1998), 55–66 | MR | Zbl

[3] Paasonen V. I., “Compact schemes for system of second order equations without mixed derivatives”, Russ. J. Numer. Anal. Math. Modelling, 13:4 (1998), 335–344 | DOI | MR | Zbl

[4] Kalitkin N. N., Chislennye metody, Nauka, M., 1978 | MR

[5] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR

[6] Samarskii A. A., “Skhemy povyshennogo poryadka tochnosti dlya mnogomernogo uravneniya teploprovodnosti”, Zhurn. vychisl. matem. i mat. fiziki, 3:5 (1963), 812–840 | MR | Zbl

[7] Mikeladze Sh. E., “O chislennom integrirovanii uravnenii ellipticheskogo i parabolicheskogo tipov”, Izvestiya AN SSSR. Ser.: Matem., 5:1 (1941), 57–74 | MR

[8] Fryazinov I. V., “O skheme povyshennogo poryadka tochnosti resheniya tretei kraevoi zadachi dlya uravneniya $\Delta u-qu=-f$ v pryamougolnike”, Zhurn. vychisl. matem. i mat. fiziki, 11:2 (1971), 515–517

[9] Zhdan S. A., Paasonen V. I., “Skhema povyshennoi tochnosti dlya zadachi o nepotentsialnom techenii idealnoi zhidkosti v ploskikh kanalakh”, Chislennye metody mekhaniki sploshnoi sredy. — Novosibirsk, 3:5 (1972), 35–39 | MR

[10] Yanenko N. N., Metod drobnykh shagov resheniya zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967