Decomposition methods for the solution to elliptic and parabolic boundary value problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 4, pp. 361-372.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a short survey of investigations on the decomposition! methods for elliptic and parabolic problems that where carried out in the ICM SB RAS during 20 years is presented.
@article{SJVM_1999_2_4_a5,
     author = {Yu. M. Laevsky and A. M. Matsokin},
     title = {Decomposition methods for the solution to elliptic and parabolic boundary value problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {361--372},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_1999_2_4_a5/}
}
TY  - JOUR
AU  - Yu. M. Laevsky
AU  - A. M. Matsokin
TI  - Decomposition methods for the solution to elliptic and parabolic boundary value problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 1999
SP  - 361
EP  - 372
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_1999_2_4_a5/
LA  - ru
ID  - SJVM_1999_2_4_a5
ER  - 
%0 Journal Article
%A Yu. M. Laevsky
%A A. M. Matsokin
%T Decomposition methods for the solution to elliptic and parabolic boundary value problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 1999
%P 361-372
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_1999_2_4_a5/
%G ru
%F SJVM_1999_2_4_a5
Yu. M. Laevsky; A. M. Matsokin. Decomposition methods for the solution to elliptic and parabolic boundary value problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 2 (1999) no. 4, pp. 361-372. http://geodesic.mathdoc.fr/item/SJVM_1999_2_4_a5/

[1] Schwarz H. A., “Uber einige Abbildungsaufgaben”, Ges. Math. Abh., 2, Springer, Berlin, 1890, 133–143

[2] Sobolev S. L., “Algoritm Shvartsa v teorii uprugosti”, Dokl. AN SSSR, 4:6 (1936), 235–238

[3] Aleksidze M. A., “O tselesoobraznosti primeneniya alterniruyuschego metoda Shvartsa na elektronnykh tsifrovykh mashinakh”, Dokl. AN SSSR, 120:2 (1958), 231–234 | MR | Zbl

[4] Miller K., “Numerical analogs to the Schwarz alternating procedure”, Numer. Math., 7 (1965), 91–103 | DOI | MR | Zbl

[5] Dyakonov E. G., Raznostnye metody resheniya kraevykh zadach. Vyp. I (statsionarnye zadachi), Izd-vo MGU, M., 1971

[6] Romanova S. E., Priblizhennye metody resheniya raznostnykh uravnenii Laplasa i Puassona na mnogougolnikakh asimptoticheski za dva slozheniya na tochku, Dis. $\dots$ kand. fiz.-mat. nauk: 01.01.07, M., 1983

[7] Matsokin A. M., “Metod fiktivnykh komponent i modifitsirovannyi raznostnyi analog metoda Shvartsa”, Vychislitelnye metody lineinoi algebry, AN SSSR. Sib. otd-nie. VTs, Novosibirsk, 1980, 66–77 ; Sov. J. of Numer. Anal. and Math. Modell., 4:6 (1989), 471–477 | MR | DOI | MR

[8] Sander S. A., Modifikatsiya algoritma Shvartsa dlya resheniya setochnykh kraevykh zadach v oblastyakh, sostavlennykh iz pryamougolnikov i parallelepipedov, Preprint / AN SSSR. Sib. otd-nie. VTs; 83, Novosibirsk, 1981 | MR

[9] Matsokin A. M., Nepomnyaschikh S. V., “Primenenie okaimleniya pri reshenii sistem setochnykh uravnenii”, Vychislitelnye algoritmy v zadachakh matematicheskoi fiziki, AN SSSR. Sib. otd-nie. VTs, Novosibirsk, 1983, 99–109; Sov. J. of Numer. Anal. and Math. Modell., 4:6 (1989), 487–492 | DOI | MR

[10] Matsokin A. M., Nepomnyaschikh S. V., “Metod alternirovaniya Shvartsa v podprostranstve”, Izv. Vyssh. uchebnykh zavedenii. Matematika, 1985, no. 10, 61–66 | MR | Zbl

[11] Matsokin A.M., “Kriterii skhodimosti metoda Shvartsa v gilbertovom prostranstve”, Vychislitelnye protsessy i sistemy, 6, Nauka, M., 1988, 221–224 | MR

[12] Matsokin A. M., Reshenie setochnykh uravnenii na neregulyarnykh setkakh, Preprint / AN SSSR. Sib. otd-nie. VTs; 738, Novosibirsk, 1987 | MR | Zbl

[13] Nepomnyaschikh S. V., O primenenii metoda okaimleniya k smeshannoi kraevoi zadache dlya ellipticheskikh uravnenii i osetochnykh normakh v $W_2^{1/2}(S)$, Preprint / AN SSSR. Sib. otd-nie. VTs; 106, Novosibirsk, 1984 ; Sov. J. of Numer. Anal. and Math. Modell., 4:6 (1989), 493–506 | Zbl | DOI | MR

[14] Katsnelson V. E., Menshikov V. V., “Ob odnom algoritme alterniruyuschego metoda Shvartsa”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 17, Kharkov, 1973

[15] Mateeva E. I., Paltsev B. V., “O razdelenii oblasti pri reshenii kraevykh zadach dlya uravneniya Puassona v oblastyakh slozhnoi formy”, Zhurn. vychisl. matem. i mat. fiz., 13:6 (1973), 1441–1458 | MR | Zbl

[16] Smelov V. V., “Printsip iterirovaniya po podoblastyam v zadachakh s uravneniem perenosa”, Metody resheniya variatsionno-raznostnykh uravnenii, AN SSSR. Sib. otd-nie. VTs, Novosibirsk, 1979, 139–158 ; Sov. J. of Numer. Anal. and Math. Modell., 4:6 (1989), 523–533 | MR | DOI | MR

[17] Lebedev V. I., Agoshkov V. I., Obobschennyi algoritm Shvartsa s peremennymi parametrami, Preprint / AN SSSR. OVM; 19, M., 1981 | MR

[18] Tsvik L. B., “Obobschenie algoritma Shvartsa na sluchai oblastei sopryazhennykh bez naleganiya”, Dokl. AN SSSR, 224:2 (1975), 309–312 | MR | Zbl

[19] Lebedev V. I., Agoshkov V. I., Variatsionnye algoritmy metoda razdeleniya oblasti, Preprint / AN SSSR. OVM; 54, M., 1983

[20] Dryja M., Substructuring methods for parabolic problems, Technical Report / N.-Y. University. Computer Sci. Depart.; 529, N.-Y., 1990 | MR

[21] Cai X.-C., “Additive Schwartz algorithms for parabolic convection-diffusion equations”, Numer. Math., 60 (1991), 41–61 | DOI | MR

[22] Kuznetsov Yu.A., Novye algoritmy priblizhennoi realizatsii neyavnykh raznostnykh skhem, Preprint / AN SSSR. OVM; 142, M., 1987 ; Sov. J. of Numer. Anal. and Math. Modell., 3:2 (1988), 99–114 | MR | DOI | Zbl

[23] Laevskii Yu. M., “Metody razbieniya oblasti pri reshenii dvumernykh parabolicheskikh uravnenii”, Variatsionno-raznostnye metody v zadachakh chislennogo analiza, AN SSSR. Sib. otd-nie VTs, Novosibirsk, 1987, 112–128 | MR

[24] Vabischevich P. N., “Raznostnye skhemy dekompozitsii raschetnoi oblasti pri reshenii nestatsionarnykh zadach”, Zhurn. vychisl. matem. i mat. fiz., 29:12 (1989), 1822–1829

[25] Laevskii Yu. M., Pryamoi metod dekompozitsii oblasti resheniya parabolicheskikh uravnenii, Preprint / AN SSSR. Sib. otd-nie VTs; 946, Novosibirsk, 1992 ; “On the domain decomposition method for parabolic problems”, Bull. NCC, Numer. Anal., 2 (1993), 41–62 | MR

[26] Laevsky Yu. M., “On the explicit-implicit domain decomposition method for parabolic problems”, Bull. NCC, Numer. Anal., 2 (1993), 79–90

[27] Rannacher R., The Summer Conference on DD in Lambrecht, 1991

[28] Dawson C. N., Du O., “A domain decomposition method for parabolic equations based on finite elements”, 4-th Intern. Conf. on DDM for PDE, SIAM, Philadelphia, 1991, 255–263 | MR

[29] Mathew T., Russo G., Wang J., Abstr. for 7-th Intern. Conf. on DDM in Sci. and Eng. (Perm. State Univ., 1993)

[30] Vabischevich P. N., “Regionalno-additivnye raznostnye skhemy stabiliziruyuschei popravki dlya parabolicheskikh zadach”, Zhurn. vychisl. matem. i mat. fiz., 34:12 (1994), 1832–1842 | MR

[31] Samarskii A. A., Vabischevich P. N., “Vektornye additivnye skhemy dekompozitsii oblasti dlya parabolicheskikh zadach”, Diff. uravn., 31:9 (1995), 1563–1569 | MR

[32] Laevskii Yu. M., “O dekompozitsii oblasti dlya parabolicheskikh zadach s razryvnymi resheniyami i metode shtrafa”, Zhurn. vychisl. matem. i mat. fiz., 34:5 (1994), 702–719 | MR

[33] Laevskii Yu. M., Gololobov S. V., “Yavno-neyavnye metody dekompozitsii oblasti resheniya parabolicheskikh uravnenii”, Sib. matem. zhurn., 36:3 (1995), 590–601 | MR

[34] Gololobov S. V., Laevsky Yu. M., “On one domain decomposition method with nonmatching grids for solving parabolic equations”, Bull. NCC, Numer. Anal., 7 (1996), 35–49

[35] Laevsky Yu. M., “Preconditioning operators for grid parabolic problems”, Rus. J. of Numer. Anal. and Math. Modell., 11:6 (1996), 497–515 | DOI | MR | Zbl

[36] Laevsky Yu. M., “On domain decomposition method for grid parabolic problems”, Rus. J. of Numer. Anal. and Math. Modell., 13:5 (1998), 389–403 | DOI | MR | Zbl

[37] Laevskii Yu. M., Ob odnom klasse trekhsloinykh raznostnykh skhem i metode fiktivnykh oblastei, Preprint / RAN. Sib. otd-nie. IVMiMG; 1117, Novosibirsk, 1998; Сиб. матем. журн., 40:5 (1999) (в печати) | MR